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Abstract

We study the role of endogenous trust in amplifying ideological bias. Agents in our model
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these accuracies by comparing their own reasoning about the states based on introspection
or direct experience to the sources’ reports. Small biases in this reasoning can cause large
ideological differences in the agents’ trust in information sources and their beliefs about the
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1 Introduction

Ideological divisions in society often seem intractable, with those on either side persistently dis-

agreeing about objective facts. In recent years, for example, fervent debates over the validity of

global warming, evolution, and vaccination have persisted long after the establishment of a scien-

tific consensus (McIntyre 2018; Jerit and Zhao 2020). Partisans also disagree about which sources

can be trusted to provide reliable information about such facts. In the United States, for instance,

75 percent of conservative Republicans say they trust news and information from Fox News, while

77 percent of liberal Democrats say they distrust it (Pew Research Center 2020). Such divisions

have deepened even as new media technologies have made information more widely and cheaply

available than ever before. The information age has, paradoxically, produced what has been dubbed

a “post-truth” era (Keyes 2004).

Such patterns seem at odds with the prediction of many Bayesian (e.g., Blackwell and Dubins

1962) and non-Bayesian (e.g., DeGroot 1974) learning models in which widespread availability

and distribution of information leads all agents’ beliefs to converge to the truth. Many possible

alternatives have been proposed. However, such accounts generally require that individuals have

substantial psychological biases towards cognitive consistency or confirmation (e.g., Lord, Ross,

and Lepper 1979; Cotton 1985; Rabin and Schrag 1999; Baliga, Hanany, and Klibanoff 2013) or

have limited memory or attention (e.g., Fryer, Harms, and Jackson 2019; Che and Mierendorff

2019).

In this paper, we explore a different possibility, which is that rational Bayesian inference may

magnify the influence of even small cognitive biases when agents are uncertain which sources

they can trust. Building on insights by Acemoglu, Chernozhukov, and Yildiz (2016) and Sethi

and Yildiz (2016), among others, we show that small biases may lead to substantial and persis-

tent divergence in both trust in information sources and beliefs about facts, with partisans on each

side trusting unreliable ideologically aligned sources more than accurate neutral sources, and also

becoming overconfident in their own judgment. Consistent with evidence suggesting that the mag-

nitude of selective exposure has generally been limited (Gentzkow and Shapiro 2011; Flaxman,

Goel, and Rao 2016; Barberá 2020), these patterns arise whether agents selectively view only

ideologically aligned sources or are exposed to a diverse range of sources. Increasing the num-
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ber of available information sources in such a setting may deepen rather than mitigate ideological

differences.

Agents in our model wish to learn about a sequence of unobserved states ωt ∼ N (0,1), which

are drawn independently in each period t. We think of each period’s ωt as capturing a distinct

item discussed in the news. In one period this might be the effectiveness of masks at stopping

disease transmission, in the next period the extent of fraud in a recent election, in a third period

the magnitude of global warming due to human activity, and so on. In each period, each agent i

observes a normally distributed signal s jt correlated with ωt from one or more information sources

j. We refer to the correlation between s jt and ωt as the accuracy of source j. We analyze two

scenarios, one in which the agent observes exactly one source j in each period (she “single-homes”

in the language of Rochet and Tirole 2003), and another in which she observes all sources j in each

period (she “multi-homes”).

To introduce a political dimension to the model, we assume that the issue in each period t

is associated with an ideological valence rt . This is a separate state variable which captures the

way realizations of that issue map to the political arena. In particular, rt is the value of ωt that

would be most consistent with conservative ideology and−rt is the value of ωt that would be most

consistent with liberal ideology. If ωt is the effectiveness of masks, rt would be negative (since

the conservative position tends to be that masks are ineffective). If ωt is the extent of fraud in the

2020 election, rt would be positive (since the conservative position is that fraud was extensive). We

allow the information sources j to have ideological biases in the sense that they may be distorted in

the direction of rt—i.e., the errors in the sources’ reports may be correlated with rt . The accuracies

and biases of the sources are the main persistent state variables that the agent seeks to learn over

time.

The final ingredient of our model is each agent’s own reasoning about the state based on in-

trospection or direct experience. We model this as an observable random variable xit . In the case

of global warming, xit might be a realization combining information about local temperatures or

weather events the agent has experienced directly and/or her understanding of the mechanisms

of climate science. In the case of an election, xit might be a realization combining information

about the procedures in place at polling places in her neighborhood and her evaluation of the dif-

ficulty of committing fraud. In the case of masks, xit might be a realization based on the agent’s
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understanding of the way disease spreads and the mechanisms by which masks could stop it.

Our key assumption is that agents believe their own reasoning to be unbiased, even though

this may not be true. In other words, xit may be systematically correlated with rt conditional on

ωt , but each agent’s prior assigns probability one to the case where this correlation is zero.1 This

prior belief is what distinguishes xit from the other information sources s jt in the model. It means

that even if an agent knows her own reasoning is noisy, and so has limited information about ωt

on its own, she is able to use it as a yardstick to determine the accuracy and biases of the s jt and

so ultimately to learn which sources she can trust. If in fact her reasoning is biased, the result

will be distorted learning about the accuracy of information sources and, consequently, the states

ωt . Our main results characterize the form such distortions take and show that they can in some

cases be large even when the magnitude of the agent’s bias (i.e., the correlation between xit and rt

conditional on ωt) is small.

Both parts of our key assumption are strongly supported by evidence. Large literatures in

psychology and behavioral economics establish mechanisms by which individuals’ own reasoning

about politically sensitive topics may be subject to ideological bias, including motivated reasoning,

selective memory, and availability (Festinger 1957; Tversky and Kahneman 1973; Lord, Ross,

and Lepper 1979; Kunda 1990; Eagly et al. 1999). The implication of such biases is that two

agents who for exogenous reasons begin with different ideologies and who have access to the

same direct experiences—observe the same observations of local weather events, say—might reach

conclusions about ωt that are systematically biased toward or away from rt . Moreover, substantial

evidence also suggests that individuals themselves are not aware of these biases or at a minimum

significantly underestimate them (e.g., Pronin et al. 2002; Pronin 2007; Thaler 2022).

Our formal results characterize the limiting distribution of each agent’s beliefs about accuracies

and states as t→∞. We show that their beliefs about the accuracies of information sources eventu-

ally converge to a limiting distribution, the mean of which we define to be the agent’s asymptotic

trust in the respective sources.

In a benchmark case in which an agent has no ideological bias and there is no uncertainty about

the accuracy of her reasoning xit , her trust is a distribution degenerate at the true accuracies of the

1In an extension, we show that our main results extend to the case where agents entertain the possibility that their
reasoning is biased, provided the magnitude of bias in the support of their priors is sufficiently small.
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information sources, and her asymptotic beliefs about ωt are the same as if she knew the true data

generating process. If the accuracy of the information sources is sufficiently high, her beliefs about

ωt are close to correct in each period.

Introducing small biases in an agent’s reasoning changes the results of the benchmark case

dramatically. An agent with a small conservative bias may come to trust right-leaning sources

more than is warranted by their true accuracy and trust unbiased sources less than is warranted.

She may become overconfident in the accuracy of her own reasoning (i.e., come to believe that xt

is more strongly correlated with ωt than it really is). She will generally come to believe that the

state ωt is positively correlated with the ideological valence rt , and thus begin any period in which

she knows rt with a conservatively biased prior. All of these effects may be large even if bias is

small, provided that the true accuracy of an agent’s reasoning is sufficiently low.

To see the intuition for the way small biases are amplified in our model, note that an agent

will come to see source j as more accurate the greater the observed correlation between its report

s jt and her reasoning xit . This correlation will be zero when s jt is perfectly uncorrelated with the

state and positive when the source is perfectly accurate. But when the reasoning xit is noisy, the

magnitude of the correlation will be small even in the perfectly accurate case. Small differences in

observed correlation—such as those that might be induced by a small ideological bias—thus imply

large differences in perceived accuracy. An agent who knows her own ability to discern the truth

of global warming is limited will view even a weak correspondence between her own conclusions

and the reports of an information source as highly diagnostic.

Distortions in the way agents learn about the informational environment can translate into

substantial disagreements about the states ωt . We first show how biases affect the accuracy of

agents’ posterior beliefs about ωt . We then show how the magnitude of disagreement between

different agents depends on the accuracy and bias of their reasoning, as well as on those of the

observed sources. When agents all observe a common unbiased source, disagreement is generally

small even when the agents themselves are biased. When biased sources are introduced to the

market, even small biases on the part of agents can lead to large disagreement.

The final section of our main results considers how these findings differ under single and multi-

homing. A common intuition is that divergent trust and polarization might be mitigated if agents

were exposed to an ideologically diverse set of information sources. We show that it is possible for
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multi-homing to have beneficial effects consistent with this intuition, but also that this need not be

the case. Multi-homing may leave trust and polarization unchanged, or even exacerbate them.

Two extensions explore the implications of ideological bias for media competition and political

behavior. First, we endogenize the choice of bias by media outlets in a sequential positioning game.

We find that media competition can lead to greater media bias as well as intensified disagreements

among viewers. Second, we show mistrust of motives across ideological divides can arise when

agents underestimate both their own and others’ biases. Ideological bias in this case can intensify

political conflict, leading to costlier battles for power.

Our work contributes to a small but growing set of models in which agents must simultaneously

learn about states of the world and the accuracy of sources that provide information about those

states. Acemoglu, Chernozhukov, and Yildiz (2016) show that arbitrarily small differences in pri-

ors about the signal distribution as well as the state can generate large and persistent disagreements

among fully Bayesian agents. Sethi and Yildiz (2016) study the trade-off between learning from

well-informed sources, whose signals are precise, and well-understood sources, whose perspec-

tives are well known, and show that long-run behavior is history independent. Cheng and Hsiaw

(2022a) study a model in which agents do not integrate information about states and credibility

correctly and show that this can lead to persistent polarization. Cheng and Hsiaw (2022b) study a

cheap talk game where receivers are uncertain of a state and the sender’s type and show that per-

sistent disagreement arises. Liang and Mu (2020) study social learning about information sources

over time and focus on failures of learning rather than persistent polarization or disagreement.

Relative to existing models, we highlight and characterize a novel mechanism by which en-

dogenous trust can amplify small behavioral biases. This is related to but distinct from the mecha-

nism in Acemoglu, Chernozhukov, and Yildiz (2016), which focuses on differences in prior beliefs

among fully Bayesian agents. It is also distinct from the mechanism in Cheng and Hsiaw (2022a),

which is based on a different behavioral bias and does not produce amplification. Our findings that

(i) agents end up trusting unreliable but ideologically aligned sources more than accurate neutral

sources, (ii) agents become overconfident in their own reasoning, (iii) agents believe that either

the conservative or the liberal point of view is closer to the truth on average, (iv) small biases in

reasoning are amplified into persistent disagreements about facts, (v) divergent trust and beliefs

can arise to a similar extent whether agents selectively view only ideologically aligned sources or
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are exposed to a diverse range of sources, and (vi) competition among information sources can

deepen rather than mitigate ideological disagreement are all novel relative to the existing literature

on simultaneous learning about states and signals.

Other related models attribute belief polarization to behavioral biases but do not consider how

endogenous learning about the accuracy of information sources may amplify and alter these bi-

ases.2 Examples include models of confirmation bias (Rabin and Schrag 1999), ambiguity aver-

sion (Baliga, Hanany, and Klibanoff 2013), limited memory (Fryer, Harms, and Jackson 2019),

and limited attention (Che and Mierendorff 2019). Bowen, Dmitriev, and Galperti (2021) show

that belief polarization can arise in a social network where agents have small misperceptions about

the sharing behavior of their neighbors.3 In contrast to these theories, we build a model in which

endogenous trust is the central mechanism, and we assume that agents only have small biases in

their reasoning but otherwise have Bayesian learning rules and can process information from an

arbitrarily large set of high-quality sources.

Our model contributes to the literature on media bias and competition (Mullainathan and

Shleifer 2005; Gentzkow, Shapiro, and Stone 2016). The mechanism by which agents in our

model come to trust like-minded sources is closely related to the one explored by Gentzkow and

Shapiro (2006). That model is essentially static, however, and does not provide a mechanism by

which diverging beliefs or trust can persist over time.4 Our model also relates to a broader litera-

ture on misspecified learning that has recently blossomed, but these models typically do not feature

agents who learn underlying states and signal distributions at the same time.5

2There are many models wherein initial differences in the interpretation of signals can generate belief polarization
(e.g., Dixit and Weibull 2007; Andreoni and Mylovanov 2012; Kondor 2012; Glaeser and Sunstein 2014; Benoit and
Dubra 2019). These papers are motivated by a large number of experimental studies (e.g., Lord, Ross, and Lepper
1979) showing that the beliefs of subjects polarized after the presentation of new evidence.

3Relatedly, studies have shown that disagreements can persist in models of opinion dynamics in social networks
with non-Bayesian learning rules (e.g., Degroot 1974; DeMarzo, Vayanos, and Zwiebel 2003; Golub and Jackson
2010, 2012). Bayesian individuals that only observe posterior beliefs or actions of other individuals may also fail to
learn underlying states because they are able only to recall or communicate coarse information (e.g., Banerjee 1992;
Bikhchandani, Hirshleifer, and Welch 1992).

4A large empirical literature studies the relationship between media markets and political polarization (Glaeser and
Ward 2006; McCarty, Poole, and Rosenthal 2006; Campante and Hojman 2013; Prior 2013). A growing experimental
literature studies the link between trust in information sources and political beliefs (Levendusky 2013; Nisbet, Cooper,
and Garrett 2015; Benedictis-Kessner et al. 2019; Thaler 2020; Jo 2020).

5Berk (1966) provides a general statement that beliefs need not converge in the long run under misspecified
learning. Heidhues, Kőszegi, and Strack (2018) study an overconfident agent who becomes misdirected away from
the optimal action as she learns about a fundamental. Heidhues, Kőszegi, and Strack (2019) study a model in which
agents are overconfident in their own abilities and form disfavorable beliefs about the abilities of the members of
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The paper proceeds as follows. Section 2 describes the model. Section 3 presents results

on trust and polarization. Section 4 analyzes ideology and perceived bias. Section 5 allows for

overconfidence. Section 6 considers the multi-homing case. Section 7 presents extensions. Section

8 concludes.

2 Model

2.1 Setup

Each agent i learns about a sequence of unobservable states ωt ∼ N (0,1) over time periods t =

1,2, . . . ,T . Agents may observe signals (i.e., random variables) s jt from information sources

j = 1, ...,J, such as media outlets or talkative neighbors. There is also a random variable xit , which

represents information arising from agent i’s independent reasoning about ωt based on logic, in-

trospection, direct experience, or other factors unrelated to s jt .

In each period, each agent observes her own reasoning xit followed by at least one signal s jt and

possibly also the ideological valence rt . Our baseline analysis focuses on the single-homing case,

where agents choose one source to observe in each period to minimize their cumulative expected

loss over all periods. We later study the multi-homing case, where all agents observe all available

sources in every period. After observing the signal(s) and her own reasoning, an agent chooses an

action dit ∈ R. At the end of the game, the agent receives loss equal to ∑
T
t=1 (dit−ωt)

2. The true

value of ωt is never observed.

The ideological valence rt is the conservative position on ωt . We interpret this as the value

of ωt most consistent with conservative ideology—e.g., the level of mask effectiveness, election

fraud, or global warming severity that a representative conservative ideologue would argue in favor

of. In some cases, one could also think of it as the action dit that a conservative ideologue would

want to persuade an agent to take. The liberal position on ωt is −rt . In many cases, we expect

agents to be aware of how issues like masks and election fraud map to ideology, so we assume that

rt is observed (formally, at the same time as signals s jt). We will also consider the case where rt

out-groups from observing signals that are influenced by both individual ability and group-level discrimination. Frick,
Iijima, and Ishii (2020) study social learning with misspecification and show that small misspecification can lead to
extreme failures of learning. Bohren and Hauser (2021) provide a general framework for the analysis of learning in
misspecified models.
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is unobserved. This simplifies the analysis in some ways, and may be appropriate for issues like

interest rate policy, GATT negotiations, or foreign policy where less politically engaged agents

may not know political parties’ current stances.

Together, ωt , rt , xit , and the J-vector st of s jt are jointly normal and are drawn independently

over time: 
ωt

rt

xit

st

∼ N (0,Ωi)

where Ωi11 = 1 and the other elements of Ωi are free parameters.6

We define the accuracy α j of signal j to be the correlation of s jt with ωt . Note that this

correlation is a sufficient statistic for the value of observing s jt to an agent who knows Ωi and

seeks to learn about ωt because we can rescale all of the variables to have variance one without

changing the agent’s posterior beliefs. Accuracy will be high when the covariance of s jt and ωt

is large and/or when the variance of the noise in s jt orthogonal to ωt is low. A signal with higher

accuracy α j ≥ 0 has higher precision conditional on ωt in the usual statistical sense, and is more

informative according to the Blackwell (1953) ordering.7

We define the accuracy ai of each agent’s reasoning analogously to be the correlation of xit

with ωt . We are primarily interested in the case where the value of ai as small, so that the agents’

ability to learn ωt through independent reasoning alone is limited, and substantially less than what

she could potentially learn through media or other information sources s jt .

To define bias, let r̃t denote the standardized residual from a regression of rt on ωt . We will

focus throughout on the case where in fact rt is independent of ωt , so r̃t = rt/
√

Var (rt). However,

for reasons that will become clear below, we will want to allow agents to entertain the possibility

6The assumption that rt , xt , and st have zero mean is purely to simplify exposition. If the means of these variables
were free parameters, and agents’ priors on these parameters had full-support, agents would learn the true value of
these parameters in the limit as t→∞. Agents’ beliefs about other parameters, and thus the inferences that are relevant
for our results, would be unchanged. See Appendix B for details.

7To see the first point, note that, conditional on ωt , the random variable s jt/
[
α j
√

Var (s jt)
]

is distributed normally
with mean ωt and variance 1

α2
j
−1. Thus, for a decision maker who knows the values of α j and Var (s jt), observing s jt

is equivalent to observing a normal variable with mean ωt and precision (defined in the usual statistical sense of the
inverse variance) increasing in α j. To see the second point, note that α j > αk ≥ 0 implies skt is a garbling of s jt , since
we can produce a variable s∗kt with the same conditional distribution as skt by rescaling s jt and adding random noise
orthogonal to ωt .
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that ωt and rt are correlated. We let γ denote this correlation. In the case where they are corre-

lated, we would not want to say that a signal is biased if it is correlated with rt solely through its

correlation with ωt . Thus, we define the bias β j of signal j to be the correlation of s jt with r̃t . We

define the bias bi of xit to be its correlation with r̃t . For ease of exposition, we say that a source j is

perfectly right-biased if β j = 1, perfectly left-biased if β j =−1, and perfectly accurate if α j = 1.

When bi and β j have the same sign, we say that agent i and source j are like-minded. When they

have the opposite sign, we say agent i and source j are opposite-minded.

We further assume that ai > 0, so that xit is always positively correlated with ωt , that xit is

independent of st conditional on ωt and rt , and that both of these restrictions are known by the

agents. As shown in Remark 1 below, the conditional independence of xt and st implies that

the correlations between the observable variables, namely rt , xit , and st , is fully determined by

(ai,bi,α,β ,γ,Σ), where γ is the correlation of rt with ωt , Σ = corr(st), and α and β denote the

J-vectors of α j and β j respectively. The independence of ωt and r̃t implies that a2
i + b2

i ≤ 1 and

α2
j +β 2

j ≤ 1.

Note that in the simple case where the variances of xit and the elements of st are all one, our

setup implies that we can write

s jt = α jωt +β j r̃t + ε jt ,

xit = aiωt +bir̃t +ηit ,

for ε jt ∼ N(0,1−α2
j −β 2

j ) and ηit ∼ N(0,1−a2
i −b2

i ) residuals orthogonal to both ωt and r̃t .8

In the single homing case, each agent chooses a source j to observe in each period to minimize

expected loss. This choice is akin to a multi-arm bandit problem. However, unlike the standard

bandit problem, the payoffs from each period are not observed immediately, and the agent observes

auxiliary information in the form of xit . This renders standard solutions to the bandit problem

inapplicable. To tractably capture the tradeoff between exploration and exploitation, we assume

that all agents follow an ε-first (sometimes called an “explore-first”) strategy (Slivkins 2019).9

8When the variances are not one, these same expressions hold with s jt replaced by s jt/
√

Var (s jt) and xit replaced
by xit/

√
Var (xit).

9This strategy is not optimal but it dramatically increases the tractability of our model by separating the charac-
terization of long-run beliefs from the endogenous choice of which source to observe. A more optimal strategy would
incorporate information from sequentially observed signals into the dynamic choices of what sources to observe by
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Table 1: Variables and Parameters
ωt True state
rt Ideological valence
xit Agent i’s reasoning
st Vector of signals s jt from information sources
ai Correlation of xit with ωt
bi Correlation of xit with the residual of a regression of rt on ωt
α Correlation of st with ωt
β Correlation of st with the residual of a regression of rt on ωt
γ Correlation of rt with ωt
Σ Correlation matrix of st

That is, the agents each observe a random source with uniform probability during the first εT

“exploration” periods, where ε ∈ (0,1). In the remaining periods, the agent chooses the source

that minimizes expected loss, subject to the restriction that she chooses a source for which the

posterior mean on α j is weakly positive provided such a source is available.10

We are interested in agent i’s beliefs about θi = (ai,bi,α,β ,γ,Σ) and ωt during the exploitation

phase in the limit where the number of periods is large, so T → ∞. The true value of θi is denoted

θ0i, and where it adds clarity we use a0i, b0i, α0 j, β0 j, γ0, and Σ0 to refer to the true values of

the individual components. The set of all possible θi is denoted as Θi = Θ. In our main case of

interest, the value of a0i is small and γ0 = 0.

The correlation matrix for (ωt ,rt ,xit ,st), which we denote as Ω̃i, is fully parametrized by θi.11

The covariance matrix is thus Ωi =V
1
2

i Ω̃iV
1
2

i , where Vi is a diagonal matrix containing the variances

of (ωt ,rt ,xit ,st). We assume that the set of all possible variances Vi is a compact set V . The

trading off the gains from exploration and exploitation. However, in the limit as T →∞, it will be in the agent’s interest
to learn the accuracies as precisely as possible, so we expect long-run beliefs under the epsilon-first strategy to be the
same as under a more optimal strategy.

10The restriction rules out an agent choosing to observe sources she believes are negatively correlated with the truth
over one she believes is positively correlated with the truth; such a strategy could improve the accuracy of beliefs in
principle, but we see it as unrealistic from a behavioral point of view. We relax this assumption in Appendix E and
show that most of our results are robust to dropping this restriction.

11Specifically, given any θi, the correlation matrix for (ωt ,rt ,xit ,st) is given by

Ω̃i (θi) =


1 γ ai α ′

γ 1 aiγ +bi
√

1− γ2 α ′γ +β ′
√

1− γ2

ai aiγ +bi
√

1− γ2 1 aiα
′+biβ

′

α αγ +β
√

1− γ2 aiα +biβ Σ

 .
Note then that Θ is the set of all θ ∈ (0,1]× [−1,1]2J+2× [−1,1]J

2
such that Ω̃(θ) is positive semi-definite and the

diagonal entries of Σ are equal to one.
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Lebesgue space on (Θ,V ) is denoted ((Θ,V ) ,L ,ν).

Example. (Masks) In period t, the state ωt indexes the effectiveness of masks at preventing the

transmission of disease during a pandemic.12 The ideological valence rt is negative: conservatives

believe masks are relatively ineffective, while liberals believe they are relatively effective. Note

that it is natural to think of the magnitude |rt | as a finite number—neither group typically claims

that masks are completely effective or ineffective. The signals s jt could include reports on news

or social media about scientific studies of mask effectiveness, anecdotes where people caught the

disease despite wearing a mask, and so on. The true accuracy of these sources is captured by

α j. Right-biased sources (with β j > 0) might distort information in a negative direction by down-

playing evidence that masks are effective (causing the value of s jt to be pulled closer to rt < 0);

left-biased news reports might do the opposite (causing the value of s jt to be pulled closer to

−rt > 0). Reasoning xit could be information from logical inference, e.g., about the likelihood that

masks fully block disease-carrying droplets, and direct observation, e.g., of people in the agents’

own social network who either did or did not wear masks and may or may not have caught the

disease. The parameter ai governs the accuracy of this reasoning, and it might depend on factors

like the agent’s knowledge of science. The parameter bi governs the extent to which the agent’s

reasoning is systematically distorted toward either the liberal or the conservative position on mask

effectiveness.

Example. (Election) In period t, the state ωt indexes the extent of fraud in a recent presidential

election. The ideological valence rt is positive: conservatives believe fraud was high while liberals

believe fraud was low. It is again natural to think of the magnitude |rt | as a finite number—neither

group claims that all votes in the election were fraudulent nor that no votes in the election were

fraudulent. The signals s jt could include reports on news or social media about scientific studies of

voter fraud, court cases challenging election outcomes, claims made by politicians, and so on. The

true accuracy of these sources is captured by α j. Right-biased sources (with β j > 0) might distort

information in a positive direction by emphasizing anecdotes suggesting fraud (causing the value

of s jt to be pulled closer to rt > 0); left-biased news reports might do the opposite by emphasizing

12It might be more intuitive to think of the effectiveness of masks as a bounded random variable. Note that we can
accommodate this by interpreting effectiveness as exp [c0 + c1ωt ]/(1+ exp [c0 + c1ωt ]) so it has support on [0,1] and
the arbitrary constants c0 and c1 determine the location and scale of the distribution of effectiveness within the [0,1]
interval.
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evidence that fraud is rare (causing the value of s jt to be pulled closer to −rt < 0). Reasoning

xit could be information from logical inference, e.g., about the likelihood that widespread election

fraud would be detected, and direct observation, e.g., of the way polling places, mail-in ballots,

etc. were administered in the agents’ own neighborhood. The parameter ai governs the accuracy

of this reasoning, and it might depend on factors like the extent to which the agent knows details

of the vote-counting process. The parameter bi governs the extent to which the agent’s reasoning

is systematically distorted toward either the liberal or the conservative position on election fraud.

2.2 Learning

At the beginning of the first period, agents have an absolutely continuous prior belief µ i
0 over

(Θ,V ) with a continuous density with respect to ν . For tractability, we assume that θi is inde-

pendent of Vi under each agent’s prior and we let µ i
0,θ and µ i

0,V respectively denote agent i’s prior

distribution on θi and Vi. Our central assumption is that all θi in the support of µ i
0,θ have bi = 0. In

other words, all agents a priori believe that their own reasoning xit is unbiased, even though their

true bias may be nonzero. In Appendix C, we show that our main results extend to the case where

agents believe their own bias to be bi = b∗ for some small b∗ 6= 0.

All θi in the support of µ i
0,θ also have ai ∈ Ai for some set Ai. In our baseline analysis, we

assume that agents know the accuracy of their own reasoning, so Ai = {a0}. We then extend

the model to allow for the possibility that agents could become overconfident. In this case, Ai =

(0,amax
i ] for some amax

i ≥ a0. We will assume that µ i
0,θ has full support on the subset Θ

prior
i of Θ

consistent with the restrictions that bi = 0 and ai ∈Ai.

In our baseline case, agent i observes both xit and s jt for each j in many periods, and so, in the

limit as t→∞, she learns the J-vector ρis of correlations between xit and the elements of st . In the

case where rt is observed, agents also learn the J-vector ρrs of correlations between rt and the ele-

ments of st and the correlation ρir of xit and rt . Finally, in the case of multi-homing, agents observe

all sources in each period, so they additionally learn the correlation matrix Σ0 of the elements of st .

We abuse notation and let R0i denote the true value of the vector of correlations that can be learned

by agent i—(ρis), (ρis,ρrs,ρir), or (ρis,ρrs,ρir,Σ0) depending on the case considered—and we let

Ri (θi) denote the observable subset of the correlations Ω̃i that would occur under parameters θi.

13



Our first result defines agent i’s limiting beliefs about θi. We define the identified set of

parameters in the support of agent i’s prior that is consistent with correlations R0i as Ii (R0i) ={
θi ∈Θ

prior
i : Ri (θi) = R0i

}
. The following proposition shows that agent i’s beliefs converge

asymptotically to this identified set. Because all θi in the identified set imply the same distribution

of observed data, beliefs within the set remain proportional to the prior.

Proposition 1. Suppose the true correlations of the observed data are R0i. As T → ∞, agent i’s

posterior distribution in any period t > εT converges to a limit µ i
∞,θ such that for all measurable

ϑ ⊆LΘ,

µ
i
∞,θ (ϑ) =

µ i
0,θ (ϑ ∩ Ii (R0i))

µ i
0,θ (Ii (R0i))

.

Proof. All proofs are in Appendix A.

The second result derives the agents’ posterior expectations of ωt given their limiting beliefs

about θi. For tractability, we analyze the belief an agent would hold after observing information

source(s) but not her reasoning xit or the ideological valence rt . This is similar to analyzing the

case where the accuracy ai of the agent’s reasoning is close to zero and the agents are aware of

this. We denote the mean of the agent’s posterior at this ex interim stage by ω
i
t . We define agent i’s

expectation of α j under µ i
∞,θ , which we denoted as α

i
j, as agent i’s trust in source j. The following

characterization follows from standard conjugate prior results for the normal distribution.

Proposition 2. Suppose agent i single homes and her posterior belief on θi is µ i
∞,θ . In any period

t where she observes source j, the mean of her posterior on ωt given s jt (but not xit or rt) is

ω
i
t
(
s jt
)
= α

i
j s̃ jt , (1)

where s̃ jt = s jt/
√

Var
(
s jt
)

is the standardized version of s jt .

This proposition shows that the mean of agent i’s posterior on ωt will be proportional to the

normalized value of the signal s jt that she observes, with the constant of proportionality equal to

her trust α
i
j in source j. When the agent believes source j is unreliable (α i

j ≈ 0), her beliefs about

the true state do not vary much with the content of source j, and they stay concentrated close to

the prior value of zero. When the agent’s trust in source j is high (α i
j ≈ 1), her beliefs track the

content of the source closely, and their variance approaches 1.
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Our third result shows that given her limiting belief about θi, a single-homing agent observes

a source that she believes to be most accurate. To be precise, let J i
+ denote the set of sources j

such that α
i
j ≥ 0, which we assume here to be non-empty. The agent chooses to observe the source

from this set that minimizes her expected mean squared error after observing both the source and

her own reasoning:13

min
j∈J i

+

E
[(

d∗i jt
(
s jt ,xit

)
−ωt

)2
]
,

where the expectation is taken under the marginal distribution of
(
s jt ,xit ,ωt

)
under µ i

∞ and d∗i jt
(
s jt ,xit

)
is the optimal decision after seeing

(
s jt ,xit

)
.14

Proposition 3. Suppose agent i single-homes, her posterior belief on θi is µ i
∞,θ , and the expected

accuracy ai of her own reasoning under µ i
∞,θ is less than one. Then she chooses to observe in each

period a source j for whom her trust α
i
j is maximal (provided some source has α

i
j ≥ 0).

Proposition 3 shows that, setting aside the degenerate case where an agent believes her own

reasoning to be perfectly accurate, she converges to always getting information from the source she

trusts most. This result is not entirely trivial. The agent’s choice of j is equivalent to minimizing

posterior variance integrating over both the uncertainty in
(
s jt ,xit ,ωt

)
given Ωi and the uncertainty

in Ωi. If we were only integrating over the former, this would be a standard case of choosing

among signals with known distributions and it would be optimal to choose the one with the highest

α j. Once there is uncertainty over Ωi, it may not be obvious that the agent would choose the one

with the highest expected α j, since the whole distribution of the agent’s belief about α j (and other

parameters) could in principle matter for the expected loss. Our proof exploits the fact that the

optimal decision rule depends linearly on α j.

2.3 Benchmark Cases

As shown above, information about source j’s accuracy α j allows the agents to learn about the

underlying state ωt from observing s jt . As shown below in Section 3, agents rely on the observed

correlation of reasoning xit and signal s jt to learn α j. In this section, we discuss benchmark cases

13Here it is unimportant whether the agent observes xit . The same source j is chosen whether the agent minimizes
her mean squared error after observing both xit and s jt or after observing s jt but not xit .

14If the restriction that j ∈J i
+ were dropped, the agent instead chooses to observe a source j for whom

∣∣α i
j
∣∣ is

maximal. In Appendix E, we show that all of our results in subsequent sections are robust to dropping this restriction.
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where either no signal or no reasoning is available. In these cases, agents do not endogenously learn

α j, and small ideological biases in the agents’ reasoning are not amplified into large disagreements.

For simplicity, we assume here that there is a single source (J = 1), agents know the accuracy of

their own reasoning (Ai = {a0}), and rt is never observed.

No Signals

First, suppose that agent i observes only her reasoning xit in every period, but never observes

any source j or the ideological valence rt . In the main case of interest where the accuracy of

her reasoning a0i is small, her posterior beliefs will always be noisy. To see this, assume for the

moment that xit is known to have variance equal to one, and that agent i knows the accuracy of their

own reasoning, so Ai = {a0i}. Then her posterior mean on ωt after observing xit is ω
i
t = a0ixit =

a0i (a0iωt +ηit) = a2
0iωt +a0iηit , where ηt is an error term that is normally distributed with mean

zero and variance 1−a2
0i . When a0i is small, ω

i
t is a very noisy estimate of ωt .

No Reasoning; Exogenous Trust

Next, suppose agent i observes a single source j every period but never observes her reasoning xit

or the ideological valence rt . In this case, her beliefs about the source’s accuracy α j never change.

The mean of her posterior belief about ωt after observing s jt in any period t is ω
i
t = α

0
js jt , where

α
0
j is the expectation of the source’s accuracy under the agent’s prior µ0.

If α
0
j is zero—roughly speaking, agents think the source is as likely to be a perverse “false

news” source as an accurate “true news” source—then agent i’s posterior belief about ωt would be

zero in all periods, no matter what value of s jt is realized. She would therefore learn nothing from

observing s jt , even if s jt is in fact highly accurate.

If instead α
0
j = α0 j, so the agents exogenously know the true accuracy of signals, then their

posterior belief about ωt will be the same as that of a Bayesian. Furthermore, if source j is highly

accurate, ω
i
t will be close to the true value ωt . This will be true regardless of the agent’s bias b0i

or the source’s bias β0 j.

A closely related benchmark is one where agent i does observe xit but trust is exogenous in

the sense that the agent’s prior on α j is degenerate at α
0
j . Updating from s jt in this case will be

identical to that when xit is not observed. The only difference is that agent i’s beliefs about ωt
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would also be affected by the realization of xit . In the main case of interest where the accuracy a0i

of xit is low and the agents know that it is low, the effect of xit on beliefs will be small, and it will

remain true that beliefs do not depend on bias. In this sense, endogenous trust is necessary in our

model for bias to produce polarization.

Towards the Full Model

Now consider an agent i who observes both xit and s jt in every period and whose prior mean is

α
0
j = 0. In this case, her reasoning xit functions as a reference point that allows her to learn the

accuracy of source j. To see this, note that the agent believes that (1) xit is positively correlated

with ωt (since ai > 0 with probability one under µ i
0) and (2) xit is uncorrelated with r̃t (since bi = 0

with probability one under µ i
0). This means that she expects the correlation between xit and s jt to

be increasing in the source’s accuracy α j. If she observed a more positive correlation between xit

and s jt than she would expect under her prior, then she would endogenously revise her estimate of

the source’s accuracy upward. Having learned about source j’s accuracy, the agent can then learn

about ωt from observing s jt .

If agent i’s reasoning is unbiased, her posterior belief on α j converges to the true value α0 j as

t → ∞. If the source was highly accurate (i.e., α0 j was equal to one), then in the limit as t → ∞,

her posterior mean ω
i
t approaches the true value ωt . In other words, having access to noisy but

unbiased reasoning allows an agent to accurately learn which sources to trust by aggregating over

many periods. Unbiased agents can thereby learn the underlying states of the world as if they

exogenously knew the accuracy of the information sources and therefore much more precisely

than if they had access to only her reasoning. However, as we show in the following sections,

endogenous trust can lead small biases in reasoning to become amplified into large disagreements.

2.4 Discussion: Reasoning and Bias

What does xit represent in the real world? As a baseline case, we can think of xit as information

that results from the agent’s reasoning and introspection about the likely value of ωt .15 In the

examples above, this could involve thinking about the likelihood that masks fully block disease-

15Note that in this interpretation we do not think of xit as the agent’s posterior belief about the state, but rather as
the information arising from reasoning and introspection that produces that posterior belief.
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carrying droplets or that widespread election fraud is detected. If ωt relates to economic stimulus

policy, agents might reason from first principles about how large the plausible costs and benefits

could be. (They might even write down and solve a model!) In writing the result of this reasoning

and introspection as a random variable, we think of engaging in reasoning and introspection as

analogous to observing the results of a noisy experiment, just as a student trying to solve a math

problem in their head will produce a result that is imperfectly correlated with the true value.

There are a large number of well-studied psychological phenomena that could provide a micro-

foundation for bias in agents’ reasoning and introspection (i.e., b0i 6= 0). Consider an agent who

has grown up in a liberal family, benefitted from liberal policies, and taken actions (like voting)

consistent with liberal ideology. Such an agent may engage in motivated reasoning (Kunda 1990),

distorting her inferences to reach conclusions that support a liberal point of view. She may under-

weight arguments or evidence pointing in the conservative direction in order to reduce cognitive

dissonance (Festinger 1957). She may be more likely to remember evidence consistent with a lib-

eral view (Eagly et al. 1999). She may tilt her assessment of the credibility of evidence due to

confirmation bias (Lord, Ross, and Lepper 1979). She may also live in an environment in which

information that supports her position is more “available” in the sense of Tversky and Kahneman

(1973) – for example, if she had gone to high quality public schools, she may find it easier to think

of the benefits of teachers’ unions than their costs. Finally, it may be that evidence that supports the

liberal position is more salient in the sense of Bordalo, Gennaioli, and Shleifer (2012). Note that

these latter two mechanisms could produce bias even in the case where the agent does not know

the value of rt—e.g., she might be more likely to reach conclusions favoring teachers’ unions even

if she is unaware that this is a position typically supported by the Democratic party.

A large body of evidence suggests that individuals themselves are not aware of these kinds of

biases or at a minimum significantly underestimate them (e.g., Pronin et al. 2002; Pronin 2007;

Thaler 2022).

Another possibility is that xit captures information about the true value of the state ωt that the

agent observes directly. This could be mask behavior or election procedures as in the examples

above. It could capture weather events in the agents’ locality (when ωt relates to global warming),

the agents’ own experiences with public schools (when ωt relates to education policy), or the

agent’s personal economic situation (when ωt relates to economic policy). Such information could

18



be observed either before or after seeing s jt . Bias in these observations could arise through many of

the same mechanisms as bias in reasoning. For example, an agent from a liberal background might

be more likely to remember unusually hot days or unusually severe storms that suggest global

warming is severe (Eagly et al. 1999). It could also be that certain kinds of direct observation

tend to favor one side or the other inherently and agents fail to adjust for this selection. For

example, observing the effort, wages, and impacts of public school teachers may naturally provide

more evidence favorable to teachers’ unions, and observing polling places where voting fraud is

unlikely to be visible might naturally provide more evidence favorable to the view that elections

are conducted fairly.

A final possibility is that xit is the signal of a particular information source that agents believe

a priori to be unbiased. This might be what their mothers say, or what the Bible says, or what

scientists say, or even the report of a particular news source that they begin with extraordinary faith

in.

What is crucial for our model is that xit satisfies two conditions. First, agents believe that it is

free from ideological bias (b = 0) with probability one. Second, contrary to the agents’ beliefs, xit

may in fact be subject to ideological bias (b0i 6= 0).

The ultimate source of the agents’ biases is left unmodeled in our framework—b0i is an exoge-

nous parameter that we think of as determined by experiences and motivations prior to t = 0. We

show below that non-zero bias leads to distortion in agents’ trust in sources and their beliefs about

states of the world, and also shapes what we label “ideology”—agent i’s belief γ
i about the correla-

tion between the truth ωt and the ideological valence rt . This point might lead to some confusion,

as we show how bias can shape ideology, but psychological phenomena like motivated reasoning

also provide reasons why ideology would shape bias. A richer model that included this two-way

feedback between ideology and bias might well lead to even more dramatic divergence of trust and

beliefs. We isolate one direction of causality for analytic tractability, taking bias in reasoning to be

a fixed characteristic that may depend on baseline ideology and other traits but does not change as

ideology evolves.

It may seem strong to assume that the agent puts such dogmatic ex ante faith in her own rea-

soning or observation. However, if there is no source of truth in which she would place significant

faith in this sense, the agent would never learn what sources she can trust. More precisely, she
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would never be able to reject that any particular source is either perfectly positively correlated,

uncorrelated, or perfectly negatively correlated with the state. We demonstrate this result in Ap-

pendix F. We also show in Appendix C that our results are robust to allowing agents to entertain

the possibility of small biases in their own reasoning.

3 Trust and Polarization

In this section, we assume there are multiple available sources, so J ≥ 2, but each agent single-

homes and so observes only one source in each period. For simplicity, we focus on the case where

the ideological valence rt is never observed. This means that ideological valence is a latent source

of bias in signals and reasoning but is not something agents make inferences from directly. While

in reality rt is often observed, it is plausible that a politically disengaged person may not know the

conservative or liberal positions on a wide range of issues. We also focus on the case where agents

know the accuracy a0i of their own reasoning, so that Ai = {a0}. We consider the case where

rt is observed in Section 4, the case where agents are uncertain about the accuracy of their own

reasoning in Section 5, and the case of multi-homing in Section 6.

For ease of exposition, we assume that there are three agents i ∈ {U,R,L}. All agents have

accuracy a0i = a0, where a0 > 0. Agent U’s reasoning has no bias, so b0U = 0. Agent R’s reasoning

has positive bias, while agent L’s reasoning has negative bias. We set b0R = b0 and b0L = −b0,

where b0 > 0.

Assumption 1. The support of µ i
0,θ is the set Θ

prior
i ⊂Θ for which bi = 0 and ai = a0i.

For agent U , this is a simple case of Bayesian learning with a correctly specified model. For

agents R and L, the true parameters of the model lie outside the support of their priors (since

b0i 6= 0). Our model is thus an example of Bayesian learning under misspecification (Lian 2009).

Because rt is not observed, agent i learns only the correlation ρis between st and xit . This

restricts agent i’s limiting beliefs, since the model requires that ρis = aiα +biβ . The identified set

is then Ii (R0i) =
{

θi ∈Θ
prior
i : aiα +biβ = ρis

}
.

Misspecified learning can lead to instability or lack of convergence (Berk 1966), but we focus

our baseline analysis on parameter values such that the data agents observe do not violate their
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model of the world—i.e., the identified set is non-empty. A sufficient condition in the single-

homing case is that b0 ≤ a0 and
∣∣α j
∣∣+ ∣∣β j

∣∣≤ 1 for all j. We relax this assumption when we extend

the model to allow overconfidence in Section 5 below.

Assumption 2. b0 ≤ a0 and
∣∣α j
∣∣+ ∣∣β j

∣∣≤ 1 for all j.

We can then show that the identified set Ii (R0i) is non-empty and contains a single value of α .

It does not restrict the values of γ or β because when rt is not observed, the observed correlations

do not contain information about these parameters.

Proposition 4. Suppose rt is never observed and agents single home. Under Assumptions 1 and 2,

agent i’s identified set, Ii (R0i), is non-empty and consists of all θi ∈ Θ such that ai = a0i, bi = 0,

and α = ρis
a0i

.

Proposition 4 shows that when rt is never observed, each agent’s beliefs about each source’s

accuracy is concentrated on α j =
ρi j
a0i

. The agent believes source j is more accurate the more

correlated source j’s reports are with i’s reasoning. For a given level of correlation, the update is

larger the less accurate i believes her own reasoning to be, since when the correlation of xit with

the true state is small, xit and s jt can only be substantially correlated if the correlation of s jt with

the true state is large. This result follows from the agent’s assumption that her reasoning to be

unbiased. Its implications are discussed further below.

Trust

A large body of evidence shows divergence between the sources trusted by conservatives and the

sources trusted by liberals (e.g., Pew Research Center 2014a, 2020), and many have pointed to

this as a key factor undermining the media’s role in democracy (Gallup and Knight Foundation

2018, 2020). Consistent with this, agents in our model may come to trust biased sources more than

unbiased sources. Divergence in trust may be large even when biases are small, provided that the

accuracy of the agents’ own reasoning is low.

To see this, notice that under Assumptions 1 and 2, Propositions 1 and 4 imply that agent i’s

trust in information source j is

α
i
j =

ρi j

a0i
= α0 j +

b0iβ0 j

a0i
. (2)
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Therefore, when the accuracy a0i of the agents’ reasoning is low, small differences in biases b0i

and β0 j translate into large differences in trust. Agents come to trust source j more when their

biases are more aligned (i.e., b0iβ0 j is positive), and that divergent trust can be extreme even when

b0i is close to zero.

Corollary 1. Suppose rt is never observed, agents single home, and Assumptions 1 and 2 hold.

Then agent R’s (L’s) trust in source j is increasing (decreasing) in the source’s bias β0 j holding

constant the source’s accuracy α0 j. In the limit as a0 ↓ b0, she will come to believe that a perfectly

right-biased (left-biased) source is perfectly accurate, and trust it more than any unbiased source

with α0 j < 1.

Polarization

Substantial literatures document large and growing disagreement between Democrats and Repub-

licans on both policy issues (Pew Research Center 2014b; Boxell, Gentzkow, and Shapiro 2017)

and questions of fact (Marietta and Barker 2019). Consistent with these findings, we show that

disagreement in our model can be large even when the underlying bias is small and accurate infor-

mation is widely available.

We focus on the exploitation periods t > εT in the limit as T → ∞, where each agent observes

the source j for which trust is maximal by Proposition 3. We define agents’ expected disagreement

when they observe these sources in such period to be π =E
[

1
4

(
ω

R
t −ω

L
t
)2
]
. Scaling by one-fourth

here ensures that π ∈ [0,1].

The expected disagreement of single-homing agents is sensitive to the set of available sources.

If all sources are unbiased, expected disagreement will be zero because all agents will come to trust

the most accurate source and the trust of R and L agents for this source will be identical. However,

if highly biased sources are available, disagreement can grow large.

To see this, suppose that all sources have accuracy α0 j < 1 and there is one perfectly right-

biased source and one perfectly left-biased source. By Corollary 1, agent R’s trust for the perfectly

right-biased source and agent L’s trust for the perfectly left-biased source are both maximal in the

limit as a0→ b0. Proposition 3 then implies that each agent observes their like-minded perfectly

biased source during the exploitation periods. Expected disagreement then reaches the maximum

possible value π = 1.
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Corollary 2. Suppose rt is never observed, agents single home, and Assumptions 1 and 2 hold.

Further suppose that all sources have accuracy α0 j < 1 and there is at least one perfectly right-

biased source and at least one perfectly left-biased source. In the limit as a0 ↓ b0, expected dis-

agreement is one.

4 Ideology and Perceived Bias

We now consider the case where the ideological valence rt is observed in every period. Agents

are able to learn the vector of correlations (ρis,ρir,ρrs). In this case, the results from the previ-

ous section are broadly unchanged, but we can additionally derive each agent’s beliefs about the

correlation of the true states with the ideological valence and the bias of sources.

Remark 1. Given parameters θi = (ai,bi,α,β ,γ,Σ), the elements of R(θi) are given by

ρis = aiα +biβ

ρir = aiγ +bi

√
1− γ2

ρrs = αγ +β

√
1− γ2.

For simplicity, we continue to focus on parameter values such that the data an agent observes

do not violate her model of the world—i.e., the identified set is non-empty. In the current case,

this will require b2
i0/a2

i0 ≤ 1−α2
0 j/(1−β 2

0 j) for all i and j. This assumption is more stringent than

Assumption 2, because learning the values of ρir and ρrs allows agents to reject their models of the

world in more cases. We relax this assumption when we extend the model to allow overconfidence

in Section 5 below.

Assumption 2’. b2
0/a2

0 ≤ 1−α2
0 j/(1−β 2

0 j) for all j.

Under this assumption, the identified set Ii (R0i) is non-empty.

Proposition 5. Suppose rt is observed and agents single home. Under Assumptions 1 and 2’, agent

i’s identified set, Ii (R0i), is non-empty and consists of all θi ∈Θ such that ai = a0i, bi = 0, α = ρis
ai

,

γ = ρir
ai

, and β = 1√
1−γ2

(ρrs− γα).
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Comparing Proposition 5 to Proposition 4 reveals three implications of allowing rt to be ob-

served: First, the agent’s identified set is concentrated on the value γ = ρir/ai. Second, the agent’s

beliefs about a source’s bias β j is a known function of the observed correlations ρi j, ρir, and ρr j.

Third, the agent’s identified set is still concentrated on the value α = ρis
ai

even when rt is observed.

The implications of these facts are explored below.

Ideology

A striking feature of political polarization in the US is the significant correlation between citizens’

liberal-conservative ideologies and their views across a range of diverse issues (Gentzkow 2016).

Consistent with this fact, agents in our model when rt is observed may form an ex ante conviction

that either the conservative or the liberal point of view on any issue is likely to be closer to the truth

on average. This conviction is captured in agents’ limiting beliefs about the correlation γ between

ωt and rt .

We define an agent’s ideology γ
i to be her limiting posterior mean on γ . We say that agent

i’s ideology is right-leaning if γ
i > 0. Under Assumptions 1 and 2’ and focusing on the case of

interest where γ0 = 0, Proposition 5 implies that agent i’s ideology is

γ
i =

b0i

a0
. (3)

Equation (3) implies that if agent R simply observes the ideological valence rt , then her beliefs

about ωt become biased toward rt , while agent L comes to believe the opposite. This is because

agent R sees positive correlation between rt and xit , so she comes to believe that conservative views

are on average closer to the truth than liberal views.

Corollary 3. Suppose rt is observed, agents single home, and Assumptions 1 and 2’ hold. Then

agent R’s (L’s) ideology is increasing (decreasing) in her bias b0.

Perceived Bias

Empirical evidence suggests that most Americans perceive media sources they distrust to be sys-

tematically biased (Gallup and Knight Foundation 2018, 2020). Consistent with this, agents in
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our model may perceive unbiased sources as biased, and also perceive like-minded sources as less

biased than they actually are.

We define an agent’s perceived bias β
i
j of information source j as the agent i’s limiting posterior

mean on β j.16 We say that agent i perceives a source j to be oppositely biased if sign
(

β
i
j

)
6=

sign
(
γ

i). We say that agent i perceives a source j as less right-biased than it actually is if β
i
j < β0 j.

Proposition 5 implies that:

Corollary 4. Suppose rt is observed, agents single home, and Assumptions 1 and 2’ hold. Then

agents R and L both perceive an unbiased source with α0 j > 0 as oppositely biased. They also

perceive a like-minded biased source with α0 j > 0 as less biased than it actually is.

Trust and Polarization when rt is Observed

Our baseline results on trust (Corollary 1) and polarization (Corollary 2) continue to hold. even

when rt is observed, by Proposition 5 and since observing rt does not change either ρis or ai. The

one proviso is that the limit a0 ↓ b0 can only be consistent with Assumption 2’ if α0 j = 0 for all j.

When a0 is bounded away from b0, however, it will continue to be the case that trust in perfectly

biased sources diverges as a0 approaches b0, and polarization consequently grows large.

5 Overconfidence

We now allow for the possibility that agents are uncertain about the accuracy ai of their own

reasoning. Because this will enable a biased agent to rationalize any signal she might observe via

a higher value of ai, it allows us to dispense with restrictions on the parameter space (Assumptions

2 and 2’). We continue to assume the ideological valence rt is observed in every period.

We now revise Assumption 1 to allow the agent to entertain any ai ∈ (0,amax
i ].

Assumption 1’. The support of µ i
0,θ is the set Θ

prior
i ⊂Θ for which bi = 0 and ai ∈ (0,amax

i ], where

amax
i ≥

√
a2

0 +b2
0.

Agents’ identified sets now may include multiple values of ai, and this means they may include

multiple values of α , β , and γ as well.

16Under Assumptions 1 and 2’, the agent’s perceived bias of source j is β
i
j = β0 j

√
1− (b0i/a0)

2− a0b0iα0 j

a2
0

√
1−(b0i/a0)

2 .
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Proposition 6. Suppose rt is observed and agents single home. Under Assumption 1’, agent i’s

identified set, Ii (R0i), is non-empty and consists of all θi ∈ Θ such that ai ∈ [ai,a
max
i ], bi = 0,

α = ρis
ai

, γ = ρir
ai

, and β = 1√
1−γ2

(ρrs− γα), where ai = max j
√

ζi j and ζi j is the population R2

from a regression of xit on rt and s jt .

Proposition 6 is similar to Proposition 5, but now the identified set contains a range of values

for ai, the accuracy of the agent’s reasoning. The lower bound ai depends on the extent to which

xit is correlated with the other data the agent observes. Under the agent’s maintained assumption

that bi = 0, the only way that the variation in xit can be jointly explained by rt and a particular s jt

is if the correlation of xit with the true state is relatively large. Thus, increasing the maximum R2

that can be achieved by regressing xit on
(
rt ,s jt

)
increases the lower bound on the possible values

of ai.

Proposition 6 also shows that an agent’s own accuracy ai and the accuracy α of the information

sources are not separately identified. Since agents believe that bi = 0, we have that ρis = aiα for

any θi ∈ Ii (R0i). A given value of ρis could result from a high value of ai and low values of α j, or a

low value of ai and high values of α j; these cannot be distinguished by the observed data. Beliefs

within the identified set will therefore remain proportional to the prior.

Overconfidence

A large literature in psychology, economics, and finance has documented overconfidence in many

contexts, with early evidence including the pioneering study of Alpert and Raiffa (1982). Ortoleva

and Snowberg (2015) explore in detail the implications of overconfidence for political behavior.

While overconfidence is a primitive in their model, the results of this section show that it may arise

endogenously as a consequence of other biases in reasoning.17

We refer to agent i’s belief about the accuracy ai of her own reasoning as her confidence. We

say that she is overconfident if ai > a0 for all θi ∈ Ii (R0i) and underconfident if ai < a0 for all

θi ∈ I (R0i).

17In Ortoleva and Snowberg (2015), agents overestimate the precision of their information because they ignore
correlation in the underlying signals they see. This leads overconfident citizens to have excess variance in their
posterior beliefs. Overconfidence in our model has the same excess variance implication, but also has a further effect
on polarization via endogenous trust.
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Proposition 6 shows that agents are never underconfident and will be overconfident if and only

if ai > a0. The bound ai is determined by the R2 values ζi j from regressions of xit on rt and s jt .

Intuitively, agents are overconfident when they observe correlations between xit , rt and at least one

s jt that are infeasible at the true value a0 (under the agent’s maintained assumption that bi = 0).

The proof of Proposition 5 shows that this R2 is given by

ζi j = b2
0i +a2

0

(
α2

0 j

1−β 2
0 j

)
. (4)

Therefore, agents R and L are overconfident if and only if

b2
0i

a2
0
> 1−max

j

{
α2

0 j

1−β 2
0 j

}
. (5)

Noting that the fraction in curly braces approaches one as α2
0 j + β 2

0 j approaches one yields the

following result.

Corollary 5. Suppose rt is observed, agents single home, and Assumption 1’ holds. Then agents

are never underconfident. Agent U is never overconfident. Agents R and L are overconfident if (i)

a0 is sufficiently small or (ii) there is some source j with α2
0 j +β 2

0 j sufficiently close to one.

Overconfidence emerges in our model in order to reconcile the agents’ dogmatic belief that

their reasoning xit is unbiased with the observed correlations of the sources. No agent is ever

underconfident, since it is always possible to rationalize the observed correlations with a suffi-

ciently high value of ai. Overconfidence can arise if an agent’s bias is large. However, even when

an agent’s bias is small, she is overconfident if the accuracy of her reasoning a0 is sufficiently

low. She is also overconfident if at least one source in the market is sufficiently accurate. When

there is at least one source with α0 j 6= 0 and α2
0 j +β 2

0 j = 1, agents with any bias are overconfident

regardless of the value of a0, since ai =
√

a2
0 +b2

0i .

Trust, Polarization, Ideology, and Perceived Bias in the Presence of Overconfidence

Can divergence in trust, disagreement about ωt , ideology, and perceived bias be large once we

allow for overconfidence? The answer is yes if a0 is small relative to b0. To illustrate, we focus on
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the case where the upper bound of the agent’s prior on ai is amax
i =

√
a2

0 +b2
0i. This is the smallest

value for which an agent’s identified set is always non-empty, and it approximates a situation where

each agent’s prior on her own accuracy a is concentrated on values that are close to the true value

a0.18 We further focus on the case where the set of sources is sufficiently rich that it includes

each agent’s trust-maximizing source. These results are not knife-edge; they hold approximately if

amax
i is close to the assumed value and there is an available source that generates sufficiently high

trust. More general results for trust and beliefs in the presence of overconfidence are derived in

Appendix D.

Because we have relaxed Assumptions 1 and 2, agent i’s trust-maximizing source is defined by

the accuracy and bias (αi,βi) that maximizes the agent’s trust over all pairs satisfying the feasibility

condition α2
i +β 2

i ≤ 1. We show in Appendix D that this is

(αmax
i ,β max

i )≡

 a0√
a2

0 +b2
0i

,
b0i√

a2
0 +b2

0i

 .

Note that the correlation between xit and a trust-maximizing source is ρis j = a0αmax
i +b0iβ

max
i =√

a2
0 +b2

0i.

Agent U’s trust will be maximized by an unbiased source with accuracy α j = 1 and bias β j = 0.

For agents R and L, the trust-maximizing source will be biased. If b0 is close to a0, a biased agent

will prefer a source with bias and accuracy close to 1/
√

2. If the set of available sources includes

agent i’s trust-maximizing source, then in the limit as T → ∞, the single-homing agent observes

her trust-maximizing source in all periods t > εT by Proposition 3.

If the trust maximizing source is available, the agent will be maximally overconfident, with con-

fidence degenerate at the maximal value amax
i =

√
a2

0 +b2
0i. This is because substituting (αmax

i ,β max
i )

for α j and β j in equation 4 yields ζi j = a2
0 +b2

0i which in turn implies ai =
√

a2
0 +b2

0i by Proposi-

tion 6. It follows that the agent’s trust in the trust-maximizing source will be one, and her posterior

will be degenerate at

ω
i
t = α

max
i ωt +β

max
i r̃t . (6)

18In the alternative case where each agent’s prior on a is concentrated on values much larger than a0, their initial
beliefs about a are severely mistaken. Furthermore, if a0 and b0 are small, then the agent learns that all available
sources are very noisy (i.e., α j is small for all j), and there is limited amplification of bias into divergent trust and
disagreement.
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We can now apply Proposition 6 to see that trust becomes highly divergent in the limit as

a0 → 0. The fact that overconfidence is maximal means an agent R’s trust α
R
j for an arbitrary

source j (not necessarily her trust maximizing source) approaches the source’s bias β j in that limit.

Her trust for a perfectly right-biased source approaches one. Her trust for a perfectly left-biased

source approaches zero. The opposite is true of agent L. Agents may therefore underestimate the

accuracy of unbiased sources and come to trust biased sources strictly more than even a perfectly

accurate source.

The agents’ ideologies and perceived biases also become highly polarized in the same limit.

Agent R believes that the true state is almost perfectly correlated with rt , i.e. γ
R→ 1, and perceives

a perfectly accurate source j to be almost perfectly left-biased. Agent L correspondingly believes

that the true state is almost perfectly correlated with −rt , i.e. γ
L→−1, and perceives a perfectly

accurate source to be almost perfectly right-biased.

Expected disagreement increases with the agents’ bias, since π = b2
0/
(
a2

0 +b2
0
)
. This will be at

least 1/2 if a0 ≤ b0, and it will approach one in the limit as a0 approaches zero. Thus, polarization

is significant if a0 is small relative to b0.19

6 Multi-Homing

A common intuition is that divergent trust and polarization could be reduced or eliminated if agents

were exposed to an ideologically diverse set of information sources. In this section, we show that

it is possible for multi-homing to have beneficial effects consistent with this intuition, but also

that this need not be the case. Multi-homing may leave trust and polarization unchanged, or even

exacerbate them.

6.1 Trust under Multi-Homing

We first consider the agent’s limiting beliefs about θi under multi-homing. In the multi-homing

case, R0i = (ρis,ρir,ρrs,Σ0), where Σ is the matrix of correlations among elements of st .20

19Note that the requirement that the source be trust-maximizing is not knife-edge: π is continuous in α and β , so
the result holds approximately when these are close to the trust-maximizing values.

20To avoid singular covariance matrices, we assume that none of xt , st , and rt are perfectly correlated with each
other, so the vector of true correlations R ∈ int(R).
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Proposition 7. Under Assumption 1’, agent i’s identified set under multi-homing, Ii (R0i), when rt

is observed, is non-empty and consists of all θi ∈ Θ with ai ∈
[
a

i
,amax

i

]
, bi = 0, α = ρis

ai
, γ = ρir

ai
,

β = 1√
1−γ2

(ρrs− γα), and Σ = Σ0, where a
i
=
√

ζi and ζi is the population R2 from a regression

of xit on rt and the elements of st .

Proposition 7 is similar to Proposition 6 except that in the multi-homing case, the lower bound

on ai is a
i

rather than ai. Rather than depending on the maximum R2 value across regressions of

xit on rt and various s jt , the bound now depends on the R2 from a regression of xit on rt and all

the s jt .21 Since ζi ≥ ζi j for all j, the lower bound on ai is tighter under multi-homing than under

single-homing. This reflects the fact that observing the correlation among the different signals in

st provides further constraints on the set of parameters that could be consistent with the data.

Since the multi-homing bound on confidence a
i
is weakly greater than the single-homing bound

ai, a multi-homing agent’s confidence will be weakly greater (in an FOSD sense) than a single-

homing agent’s confidence. This means that the difference in trust
∣∣α i

j−α
i
k

∣∣ between any two

sources can be weakly smaller under multi-homing, and that ideology γ
i will tend to be less ex-

treme.

Suppose, for tractability, that the agent has an a priori belief that the accuracies or biases of

observable external signals (i.e., st and rt) are independent of her own accuracy.

Assumption 3. ai and (α,β ,γ) are independently distributed under the agent’s prior µ i
0.

When Assumption 3 holds, each agent’s limiting (marginal) posterior distribution on ai, which

we denote by µ i
∞,a, is the agent’s prior marginal distribution on a except truncated at the lower

bound of ai. It follows that multi-homing may dampen divergent trust and ideology (while also

increasing confidence).

Corollary 6. Suppose Assumptions 1’ and 3 hold. Then for any agent i, the difference in trust∣∣α i
j−α

i
k

∣∣ between any two sources and the ideology
∣∣γ i∣∣ are both weakly smaller under multi-

homing.

While such an effect of multi-homing is possible, it need not be large, and it is possible for the

limiting posterior µ i
∞ of a multi-homing agent to be exactly the same as a single-homing agent’s.

21That is, ζi = ρ̃i
′
Σ̃−1ρ̃i where ρ̃i =

(
ρir
ρis

)
and Σ̃ =

(
1 ρ

′
rs

ρrs Σ

)
.
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For example, when at least one source with α0 j 6= 0 is located on the frontier, ai already achieves its

maximal value under single-homing, so the limiting posterior under multi-homing is unchanged.

6.2 Polarization under Multi-Homing

How does expected disagreement about ωt compare in the single- and multi-homing cases? As

shown in this subsection, it is possible for multi-homing to reduce disagreement, but multi-homing

may also increase disagreement in some situations.

To demonstrate this, we first characterize the agent’s posterior expectation of ωt when her

beliefs about θi are given by the limiting posterior µ i
∞,θ . Under multi-homing, the average belief

ω
i
t is now a linear function of the observed signals, as shown below.

Lemma 1. Suppose agent i multi homes and Assumption 1’ holds. As T →∞, in any period t > εT ,

the mean of her posterior on ωt given st (but not xit or rt) is

ω
i
t = Aiρ

′
isΣ
−1s̃t ,

where s̃t is the J-vector of standardized signals st and the amplification factor Ai is given by

Ai =
∫ amax

i

ai

1
a

dµ
i
∞,a (a) .

We consider a special case wherein each agent may observe three sources with respective biases

of β , 0,and −β , where β > 0. All of these sources are on the frontier, so α2
j +β 2

j = 1 for all j. As

shown in Lemma 2 below, a multi-homing agent’s posterior mean ω
i
t is the same as that of a single-

homing agent who observes her trust-maximing source. The reason is that a multi-homing agent

observing two distinct frontier sources can construct a linear combination of the sources’ signals

whose value will be equal to the signal of the agent’s trust-maximizing source. Appendix G show

that we obtain the same result in the limit of a sequence of random markets with non-frontier

sources.

Lemma 2. Suppose Assumption 1’ holds and there are at least two frontier sources with distinct
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biases. Then the mean of the multi-homing agent’s posterior on ωt given st is

ω
i
t = α

max
i ωt +β

max
i r̃t .

It follows, as formalized in Proposition 8 below, that multi-homing does not in general re-

duce expected disagreement. In fact, multi-homing may make it worse. To see this, let φb =

tan−1
(

b0
a0

)
denote the angle between vectors (1,0) and (a0,b0) and let φβ = sin−1 (β ) denote the

angle between (1,0) and
(√

1−β 2,β
)

. If φb ∈
(
0, 1

2φβ

)
, all single-homers observe the unbiased

source, while the multi-homers’ beliefs are the same as would occur if they observed their trust-

maximizing source, so multi-homing results in greater disagreement. If instead φb ∈
(1

2φβ ,φβ

)
,

biased single-homers observe a source with more bias than the trust-maximizing source, so multi-

homing results in less disagreement.

Proposition 8. Suppose Assumption 1’ holds and there are three frontier sources with respective

biases β , 0, and −β . Then expected disagreement π is greater under multi-homing than under

single-homing if φb ∈
(
0, 1

2φβ

)
, but smaller if φb ∈

(1
2φβ ,φβ

)
.

7 Endogenous Media Bias

What does our model imply about media competition and political behavior? In this extension, we

show that media competition can intensify disagreements in a population with ideological biases.

In Appendix H, we show that ideological bias results in interpersonal mistrust and creates welfare

losses in strategic games of collective decision-making.

To explore how media competition affects ideological disagreement, we endogenize the ac-

curacies and biases of the information sources in a sequential positioning game. We consider a

unit mass of agents. The agents are divided into three types i ∈ {U,R,L}, with accuracies ai and

biases bi defined in Section 2.2. We assume that agents have the same priors as in our full model

in Section 5, so Assumption 1’ holds. Each type i has mass mi > 0 such that mU +mR +mL = 1.

For simplicity, we assume that mL = mR.

A set of E identical potential entrants sequentially choose whether or not to enter before the

first period. If they enter, they may choose any accuracy α0 j and bias β0 j on the frontier (i.e.,
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α2
0 j + β 2

0 j = 1). Prior to entry, each entering outlet observes all preceding entrants’ choices of(
α0 j,β0 j

)
. We use subgame perfect equilibrium as our solution concept.

All agents are single-homers who choose a single outlet j to observe in a given period t. We

focus on media viewership choices during their exploitation period. We assume that agents have

beliefs about the accuracies of the outlets during these periods corresponding to the limiting pos-

terior µ i
∞,θ .22 If Proposition 3 identifies multiple potential sources to observe, agents randomize

between them with equal probability.

We assume that the revenue of a media outlet is increasing in both the mass of viewers that

choose it and the trust of its viewers. This is consistent with advertising-supported media where

conditional on viewing an outlet a customer spends more time viewing when trust is high. It could

also be consistent with paid media where the revenue an outlet can earn from a customer who

chooses to view is greater when trust is high.

Let Ji be the set of outlets for which an i-type agent’s trust α
i
j is highest. Let ξ

(
α

i
j
)

denote

revenue per viewer of type i. We assume that ξ (·) is positive, strictly increasing, continuously

differentiable, and concave, to capture the idea that firms make additional revenue from higher

trust, but with declining marginal revenue. Firms also pay an entry cost λ > 0. Each firm j thus

has expected profit:

Π j = ∑
i∈{U,R,L}

1{ j ∈Ji}
mi

|Ji|
ξ
(
α

i
j
)
−λ ,

where 1{ j ∈Ji} is an indicator for whether outlet j is in the set of outlets that type-i agents

observe, and mi/ |Ji| measures the probability of observing j within that set. Note that both Ji

and α
i
j are equilibrium outcomes that depend on the accuracy and bias choices of all media outlet

entrants.

We can now solve for the media outlets’ equilibrium choice of accuracies and bias via backward

induction. We first consider outcomes in a monopoly market.

Proposition 9. Suppose there is only one potential entrant (E = 1). Then for λ sufficiently low, this

firm enters and becomes a monopolist with α j = 1 and β j = 0. Biased agents are overconfident,

22Strictly speaking, this is a behavioral assumption that the agents’ inferences about media outlet accuracy do not
condition on the equilibrium strategies chosen by the outlets, but only on the signals the outlets produce.
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but have expected disagreement π = 0.

Proposition 9 shows that the monopolist becomes a completely accurate and unbiased source

of information. Even though the monopolist has a captive audience, it still seeks to capture rising

profits from trust. Since it faces a linear trade-off in trust between the L and R agents when it adds

bias, the optimal choice under equal proportions of L and R agents and a concave revenue function

ξ is to simply focus on accuracy instead and choose α0 j = 1 and β0 j = 0. This results in no

expected disagreement in the population, as agents observe a common outlet and have a common

level of trust. Note that this trust is still suboptimal, however, and so beliefs are less than perfectly

accurate. Note also that this result is not knife edge: If the proportions of L and R agents are

slightly unequal, the resulting optimal position remains close to unbiased, and confidence, trust,

and beliefs remain close to the characterization above.

Turning to the competitive case, we focus on the case where the set of potential entrants is suf-

ficiently large that there are potential entrants who do not find it profitable to enter in equilibrium.

We can see from Appendix D (Lemma 7) that sources gain maximum trust from biased agents by

choosing those agents’ trust-maximizing level of bias. It is then unsurprising that in the case of

competition, some sources choose to be biased and successfully retain a large audience.

Proposition 10. For λ sufficiently low and a set of potential entrants E (λ ) sufficiently large, all

entrant outlets locate at positions on the frontier with β0 j ∈
{

β L,0,β R}, where β L and β R are the

trust-maximizing biases for type L and type R agents respectively. At least one outlet chooses each

of these positions. Biased agents are overconfident. Furthermore, expected disagreement will be at

least π = 1
2 if a0 ≤ b0, and will approach π = 1 in the limit as a0→ 0. Thus, the entry of partisan

media leads to greater divergence in beliefs.

In contrast to the monopoly case, there is now significant disagreement in the population. This

stems from their complete faith in the accuracy of like-minded outlets and their undivided atten-

tion to such outlets. Their beliefs about ωt are simply degenerate at the signal s jt of their trust-

maximizing source. Since such outlets adopt the trust-maximizing bias and this bias approaches

±1 as the ratio of b0 to a0 increases, competition can potentially give rise to maximal disagree-

ment and perfectly negatively correlated beliefs. Note these results are not at all dependent on our

assumption that mR = mL.
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8 Conclusion

We present a model to explain why individuals persistently disagree about both objective facts

and the trustworthiness of information sources. In contrast to recent theories, we assume that

agents have Bayesian learning rules and can process information from an arbitrarily large set of

high-quality sources. Agents in our model learn about policy-relevant states by observing signals

from information sources whose accuracy is ex ante uncertain. Agents learn these accuracies by

comparing their own reasoning about the states to the sources’ reports.

Our contribution is to characterize how endogenous inference about the accuracy of sources

can cause small biases in reasoning to be amplified into significantly divergent beliefs about facts,

even when accurate information is commonly observed. Our model generates a large set of novel

and sharp predictions about the resulting beliefs: Partisans end up trusting unreliable but ideolog-

ically aligned sources more than accurate neutral sources, and become overconfident in their own

reasoning. They form a conviction that either the conservative or the liberal point of view is closer

to the truth on average, and perceive unbiased sources to be oppositely biased. Divergent trust

and beliefs can arise to a similar extent whether agents selectively view only ideologically aligned

sources or are exposed to a diverse range of sources. Moving from a monopoly to a competitive

market can deepen rather than mitigate ideological disagreement. Mistrust of motives results and

leads to inefficient political outcomes.

Taken together, these results highlight the outsized importance of trust in driving ideological

differences in society. If individuals’ reasoning has even a small amount of bias, then they may

learn to trust biased sources, and hence form biased beliefs about facts. For this reason, ideologi-

cal disagreement can persist even among otherwise Bayesian agents who can process information

about an arbitrarily large set of high-quality sources. Reducing selective exposure may therefore

fail to redress political polarization. Targeting the underlying drivers of divergent trust – for exam-

ple, by reducing biases in the population’s reasoning through scientific literacy, or increasing the

prominence of commonly trusted sources – may yield larger gains.
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Appendices

A Proofs

A.1 Proof of Proposition 1

Let Dit denote the data observed by agent i in period t in three cases.

• Case 1. Agent i single-homes and does not observe rt . We let Dit =
(
s jt ,xit

)
.

• Case 2. Agent i single-homes and observes rt . We let Dit =
(
s jt ,xit ,rt

)
.

• Case 3. Agent i multi-homes and observes rt . We let Dit = (st ,xit ,rt).

Lemma 3. Di1, . . . ,Dit is independent of θ0i conditional on R0i and V0i.

Proof. First consider Case 1. With slight abuse of notation, define D j
iτ =

(
s jτ ,xiτ

)
to be the τth

time j’s signal and reasoning are observed. The agent knows D j
iτ ∼ N

(
0,Ω0i j

)
for some positive

definite Ω0i j, where Ω0i j =V
1
2

0i jR0i jV
1
2

0i j, where V0i j = diag
(
Ω0i j

)
and R0i j is the correlation matrix

for D j
iτ , which in Case 1 is the correlation ρi j. Independence across periods then generalizes the

result to the entire sequence of data observations. Cases 2 and 3 can be proved in the same way.

Let Pi
Y |X denote the posterior distributions of Y given X and the prior µ i

0. Then, by Lemma 3, we

can see that for all ϑ ∈LΘ, Pi
θi|Ri,Vi,D1,...,Dt

(ϑ) = Pi
θi|Ri,Vi

(ϑ) and hence that

Pi
θi|Di1,...,Dit

(ϑ) =
∫
R,V

Pi
θi|Ri,Vi,Di1,...,Dit

(ϑ)dPi
Ri,Vi|Di1,...,Dit

=
∫
R,V

Pi
θi|Ri,Vi

(ϑ)dPi
Ri,Vi|Di1,...,Dit

.

We now characterize the limit of Pi
Ri,Vi|D1,...,Dt

. First consider Case 3, where agent i multi-

homes and observes rt . Let PDi|Ri,Vi denote the (true) distribution of Dit conditional on Ri and

Vi. The experiment
(
PDi|Ri,Vi : Ri ∈R;Vi ∈ V

)
is Gaussian with known mean zero and known

variance, and its parameter space (R,V ) is compact. It is straightforward to verify the follow-

ing regularity conditions: (i) PDi|Ri,Vi 6= PDi|(Ri,Vi)
′ for any (Ri,Vi) 6= (Ri,Vi)

′
; (ii) the mapping
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(Ri,Vi) 7→ PDi|Ri,Vi is continuous in total variation norm; (iii) PDi|Ri,Vi has a nonsingular informa-

tion matrix IR0i,V0i at (R0i,V0i) (recalling from Remark 1 we focus on θ0 such that R0i ∈ int(R));

(iv)
(
PDi|Ri,Vi : Ri ∈R;Vi ∈ V

)
is differentiable in quadratic mean at (R0i,V0i). Then by van der

Vaart (1998) Lemma 10.6 and Theorem 10.1 (the Bernstein-von Mises Theorem), the limit of

Pi
Ri,Vi|Di1,...,Dit

as t→ ∞ is a distribution degenerate at the true correlations (R0i,V0i).

Next consider Case 1, where agent i single-homes and does not observe rt . Reorder the ex-

perimentation periods so those where the agent observes (s1t ,xit) occur first, those where the agent

observes (s2t ,xit) occur second, through those where the agent observes (sJt ,xit). Denote these

respective subsequences of data by D1
i , ...,D

J
i . Since posterior beliefs are invariant to the order

of data, this reordering does not affect the limit of Pi
Ri,Vi|Di1,...,Dit

. The logic above implies that as

T →∞, the agent’s posterior belief Pi
Ri,Vi|Di1,...,Dit

at the end of the first set of periods converges to a

limit whose marginal distribution on ρi1 is degenerate at the true values of these correlations. Note

that for every finite t, Pi
Ri,Vi|D1

i
has continuous density on (R,V ) and so is a valid prior under our

model. Applying the same logic again then implies that the agent’s posterior belief Pi
Ri,Vi|D1

i ,D
2
i

at

the end of the second set of periods converges to a limit whose marginal distribution on (ρi1,ρi2)

is degenerate at the true value of these correlations. Iterating this logic repeatedly shows that

Pi
Ri,Vi|D1

i ,...,D
J
i
= Pi

Ri,Vi|Di1,...,Dit
converges to a limit whose marginal distribution (ρi1, ...,ρiJ) is de-

generate at the full vector of true correlations R0i. Case 2 can be proved in the same way.

Finally, note that for all ϑ ∈Lθ ,

µ
i
∞,θ (ϑ) = lim

T→∞
Pθi|Di1,...,Dit (ϑ)

= lim
T→∞

∫
R,V

Pi
θi|Ri,Vi

(ϑ)dPi
Ri,Vi|Di1,...,Dit

= Pi
θi|R0i,V0i

(ϑ)

= µ
i
0,θ (ϑ |Ri = R0i)

=
µ i

0,θ (ϑ ∩ Ii (R0i))

µ i
0,θ (Ii (R0i))

.

where the third equality uses the convergence of Pi
Ri,Vi|Di1,...,Dit

.
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A.2 Proof of Proposition 2

Given any value of θi ∈ Ii (R0i), the state ωt and the (normalized) signals s̃ jt are jointly distributed

 ωt

s̃ jt

∼ N

0,

 1 α j

α j 1

 .

The conditional expectation of ωt given s̃ jt (under single-homing) is then α j s̃ jt , by the properties

of the multivariate normal distribution. The desired result follows from taking the expectation over

the limiting posterior µ i
∞,θ .

A.3 Proof of Proposition 3

The expected loss for a given j is the same for all t in the exploitation period, so we can focus on

minimizing the single-period loss for a single agent. Thus we can drop the i and t subscripts. For

notational simplicity, we also focus on the simple case where all variances are known to be one.

The agent solves

min
j∈J+

Es j,x,ω

[(
d∗j
(
s j,x

)
−ω

)2
]
,

where the expectation is taken under the distribution of (s,x,ω) and d∗j
(
s j,x

)
is the optimal deci-

sion after seeing
(
s j,x

)
. Note that d∗j

(
s j,x

)
= Eω|s j,x [ω]. The law of iterated expectations implies

that

Es j,x,ω

[(
d∗j
(
s j,x

)
−ω

)2
]
= 1−Es j,x

[
d∗j
(
s j,x

)2
]
.

Note that in all cases here expectations are taken under the joint distribution of (Ω,s,x,ω) given

Ω∼ µ∞. Thus, an expression like Eω [·] refers to the expectation under the marginal distribution of

ω in that distribution.

Define d∗j
(
s j,x,Ω

)
to be the optimal decision conditional on a particular Ω. Note that

d∗j
(
s j,x,Ω

)
= Eω|s j,x,Ω [ω], so we have

d∗j
(
s j,x,Ω

)
=

 a

α j

′ 1 α ja

α ja 1

−1 x

s j

=

 a

α j

′ 1 ρ j

ρ j 1

−1 x

s j

 ,
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where the last line follows from observing that for all
(
a,α j

)
in the support of µ∞, we must have

α ja = ρ j, where ρ j is a constant equal to the empirical correlation observed in the data. Since

Eω|s j,x [ω] = EΩEω|s j,x,Ω [ω] = EΩd∗
(
s j,x,Ω

)
, we have

d∗j
(
s j,x

)
=

 a

α j

′ 1 ρ j

ρ j 1

−1 x

s j

 .

It follows from some algebraic manipulation that

Es j,x

[
d∗j
(
s j,x

)2
]
=

 a

α j

′ 1 ρ j

ρ j 1

−1 a

α j

=
a2−2ρ jaα j +α

2
j

1−ρ2
j

.

By Jensen’s inequality

α j = EΩ

[
ρ j

a

]
≥

ρ j

a
,

so we have ρ j = caα j for some c ≤ 1, holding µ∞ fixed.Therefore, if we compare the expected

variance in decisions when the agent observes sources with different trust α j, holding µ∞ fixed,

we have that

∂Es j,x

[
d∗j
(
s j,x

)2
]

∂α j
=

∂

∂α j

[
a2−2ca2α

2
j +α

2
j

1− c2a2α
2
j

]
≥ ∂

∂α j

[
a2−2a2α

2
j +α

2
j

1−a2α
2
j

]
> 0,

where the first inequality follows from c≤ 1 and the second inequality is strict under the maintained

assumption that a < 1. This then implies that for any j and k such that α
2
j > α

2
k , we have

Es j,x,ω

[(
d∗j
(
s j,x

)
−ω

)2
]
< Esk,x,ω

[
(d∗k (sk,x)−ω)2

]
and so the problem is solved by choosing a j with the highest value of α

2
j .

A.4 Proof of Proposition 4

Recall that Ii (R0i) =
{

θi ∈Θ
prior
i : aiα +biβ = ρis

}
, where any θi ∈ Θ

prior
i must give rise to a

positive semi-definite correlation matrix Ω̃(θi) for (ωt ,rt ,xit ,st). Assumption 1 implies that θi ∈
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Ii (R0i) if and only if ai = a0, bi = 0, α = ρis
ai

, and Ω̃(θi) is positive semi-definite. Assumption 2

implies that
∣∣α0 j

∣∣= ∣∣ρi j/a0i
∣∣= ∣∣α0 j +(b0i/a0i)β0 j

∣∣≤ ∣∣∣∣α0 j
∣∣+ ∣∣β0 j

∣∣∣∣≤ 1. We can then pick β = 0,

γ = 0, and assume that s jt are mutually independent and independent of rt and xit conditional on

ωt , so Σ = Corr(st) = αα ′+K, where K is a diagonal matrix with entries equal to 1−α2
j . It

follows that Ω̃(θi) is positive semi-definite, so Ii (R0i) is non-empty.

A.5 Proof of Proposition 5

The proof is similar to the proof of Proposition 4, except rt is now observed. By Assumption 1,

Remark 1, and the definition of Ii (R0i), θi ∈ Ii (R0i) if and only if ai = a0, bi = 0, α = ρis
ai

, γ = ρir
ai

,

β = 1√
1−γ2

(ρrs− γα), and Ω̃(θi) is positive semi-definite. We first show that the correlation

matrix for
(
ωt ,rt ,s jt

)
, i.e.

 1 α̃i j

α̃i j Σ̃ j

, where α̃i j =

 ρir
ai
ρi j
ai

 and Σ̃ j =

 1 ρr j

ρr j 1

, is positive

semi-definite for all j. This is equivalent to 1− α̃
′
i jΣ̃
−1
j α̃i j ≥ 0 by standard matrix results (see Boyd

and Vandenberghe 2004 Appendix A.5.5). This in turn requires that for all j,

a2
i ≥ ζi j =

ρ2
ir +ρ2

x j−2ρr jρi jρir

1−ρ2
r j

. (7)

Algebraic substitution shows that ζi j = b2
0+a2

0

(
α2

0 j

1−β 2
0 j

)
. Since ai = a0, this condition is guaranteed

by Assumption 2’. We can then assume that s jt are mutually independent and independent of xit

conditional on ωt and rt , so Σ = αα ′+ββ ′+K, where K is a diagonal matrix with entries equal

to 1−α2
j −β 2

j . It follows that Ω̃(θi) is positive semi-definite, so Ii (R0i) is non-empty.

A.6 Proof of Proposition 6

The proof is similar to the proof of Proposition 5, except the agent may become overconfident. By

Assumption 1’, Remark 1, and the definition of Ii (R0i), θi ∈ Ii (R0i) if and only ifai ≤ amax
i , bi = 0,

α = ρis
ai

, γ = ρir
ai

, β = 1√
1−γ2

(ρrs− γα), and Ω̃(θi) is positive semi-definite. By the same logic as

the proof of Proposition 5, the last condition is true if and only if ai ≥ ai = max j
√

ζi j. Therefore,

θi ∈ Ii (R0i) if and only if ai ∈ [ai,a
max
i ], bi = 0, α = ρis

ai
, γ = ρir

ai
, and β = 1√

1−γ2
(ρrs− γα).
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A.7 Proof of Proposition 7

This proof is the same as the proof of Proposition 6, except that agent i multi-homes. By Assump-

tion 1’, Remark 1, and the definition of Ii (R0i), θi ∈ Ii (R0i) if and only if ai ≤ amax
i , bi = 0, α = ρis

ai
,

γ = ρir
ai

, β = 1√
1−γ2

(ρrs− γα), and Ω̃(θi) is positive semi-definite. Since the agent believes that

xit = aiωt +ηit for some ai ∈ (0,amax
i ], Ω̃(θi) is positive semi-definite if and only if the covariance

matrix for (ωt ,rt ,st), given by

 1 α̃ ′

α̃ Σ̃

, where α̃ =

 ρir
a0
ρis
a0

 and Σ̃ =

 1 ρ ′rs

ρrs Σ

, is postive

semi-definite. This holds if and only if a2
i ≥ ζi = ρ̃

′
i Σ̃
−1ρ̃i, where ρ̃i =

(
ρir ρ ′is

)′
, by Boyd and

Vandenberghe 2004 Appendix A.5.5. Therefore, θi ∈ Ii (R0i) if and only if ai ∈
[
a

i
,amax

i

]
, bi = 0,

α = ρis
ai

, γ = ρir
ai

, and β = 1√
1−γ2

(ρrs− γα), where a
i
=
√

ζi.

A.8 Proof of Lemma 1

Given any value of θi ∈ Ii (R0i), the state ωt and the (normalized) signals s̃ jt are jointly distributed

 ωt

s̃t

∼ N

0,

 1 α ′

α Σ

 .

Under multi-homing, the conditional expectation of ωt given st is then α ′Σ−1s̃t . By Proposition

7, α = ρis
ai

. Furthermore, Ii (R0i) includes all ai ∈
[
a

i
,amax

i

]
. The desired result then follows from

taking the expectation over the limiting posterior µ i
∞,a.

A.9 Proof of Lemma 2

We first prove the following Lemma.

Lemma 4. Suppose that the signals s jt are mutually independent conditional on ωt and rt . Then

in the multi-homing case, we have

ρ
′
isΣ
−1s̃t = y′Z

(
Z′Z +K

)−1 (Z′ϕt + εt
)

and

ρ
′
isΣ
−1

ρis = y′Z
(
Z′Z +K

)−1 Z′y,
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where y=
[

a0 b0i

]′
, Z is the 2×J matrix where the jth column is

[
α0 j β0 j

]′
, K is a diagonal

matrix such that the jth diagonal is κ2
0 j = 1−α2

0 j−β 2
0 j, ϕt =

[
ωt r̃t

]′
, and εt is the J-vector of

ε jt = s jt−α0 jωt−β0 j r̃t .

Proof. The lemma follows from noting that ρis = Z′y, Σ = Z′Z +K, and st = Z′ϕt + εt .

When all sources are on the frontier and have distinct biases, K = 0 and Z spans R2, so

Z (Z′Z +K)−1 Z′ = I. Lemma 4 then implies that ρ ′isΣ
−1st = a0ωt +b0irt . Note that the R2 of the

population regression of xit on st is ρ ′isΣ
−1ρis, which is equal to a2

0 +b2
0i by Lemma 4. Therefore,

the R2 of the population regression of xt on st and rt must be weakly greater than a2
0+b2

0i. However,

the R2 from a regression of xit on st and rt cannot exceed the R2 from a regression of xit on rt and

ωt , which is a2
0 +b2

0i. Therefore, a
i
=
√

ζi =
√

a2
0 +b2

0i. Since amax
i =

√
a2

0 +b2
0i by assumption,

we have that Ai = 1/
√

a2
0 +b2

0i.

Next consider the case with additional non-frontier sources. Let the vector of signals of the

frontier sources be sF
t . Note that the elements of ρ ′isΣ

−1 are the coefficients from a population

regression of xt on the elements of st . Further note that xit = a0ωt + b0ir̃t +ηt where ηt is or-

thogonal to ε jt for all j, while each element of sF
t is a linearly independent linear combination

of ωt and rt . Thus xt is orthogonal to s jt conditional on sF
t for all non-frontier sources. By the

Frisch–Waugh–Lovell theorem, the elements of ρ ′isΣ
−1 corresponding to non-frontier sources must

be equal to zero, and the elements of ρ ′isΣ
−1 corresponding to frontier sources are the same as in

the case with all frontier sources. We conclude that ρ ′isΣ
−1s̃t = a0ωt +b0irt . Furthermore, we can

conclude that a
i
=
√

a2
0 +b2

0i using the same argument as in the previous paragraph.

A.10 Proof of Proposition 8

In the multi-homing case, there are two or more frontier sources, so a
i
=
√

a2
0 +b2

0i, α
i
j = 1, and

ω
i
t = αmax

i ωt +β max
i r̃t . Expected disagreement is b2

0/
(
a2

0 +b2
0
)
= sin2 (φb). In the single-homing

case, rt is observed along with a frontier source, so ai =
√

a2
0 +b2

0i and α
i
j =

a0α0 j+b0iβ0 j√
a2

0+b2
0i

. Note that

a biased agent observing a bias source results in trust equal to cos
(
φb−φβ

)
, while a biased agent

observing an unbiased source results in trust equal to cos(φb). If φb <
1
2φβ , then the agent’s trust

for the unbiased source is higher, so all single-homers observe the unbiased source. This implies

that π = 0 under single-homing, while disagreement is positive under multi-homing. If φb >
1
2φβ ,
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then biased single-homers observe the similarly biased source. In this case, disagreement under

multi-homing is weakly greater than disagreement under single-homing if and only if sin2 (φb) ≥

cos2 (φb−φβ

)
sin2 (

φβ

)
, which can be shown to be true if and only if φb ≥ φβ using trigonometric

identities and by noting that 0 < φb,φβ ≤ π .

A.11 Proof of Proposition 9

Because all agents will observe the monopolist’s signal in every period, the monopolist’s profit

maximization problem simplifies to choosing accuracy α0 j and bias β0 j to maximize

Π j = ∑
i∈{L,U,R}

miξ
(
α

i
j
)
−λ ,

where α
i
j is type-i consumers’ trust in the monopolist.

The derivative of trust α
i
j with respect to β0 j along the frontier is:

δ
i (

β0 j
)
=

∂α
i
j

∂β0 j

∣∣∣∣∣
α2

0 j+β 2
0 j=1

=
1√

a2
0i +b2

0i

b0i−a0i
β0 j√

1−β 2
0 j

 .

Letting m = mR = mL, the optimal frontier location must satisfy the first order condition that

∂Π

∂β0 j

∣∣∣∣
α2

0 j+β 2
0 j=1

= (1−2µ)ξ
′ (

α
U)

δ
U (

β0 j
)
+m

[
ξ
′ (

α
R)

δ
R (

β0 j
)
+ξ

′ (
α

L)
δ

L (
β0 j
)]

= 0. (8)

This condition is satisfied at β0 j = 0 because δU (0) = 0, α
R
j =α

L
j , and δ R (β0 j

)
=−δ L (β0 j

)
.

When β0 j > 0, ξ ′
(
α

R
j
)
≤ ξ ′

(
α

L
j
)

because ξ (·) is assumed to be concave and α
R
j ≥ α

L
j . Moreover

it is straightforward to show that δ R (β0 j
)
+ δ L (β0 j

)
< 0 and δ L (β0 j

)
,δU (β0 j

)
< 0. Thus the

derivative in equation (8) is strictly negative. Symmetric reasoning shows that this derivative is

strictly positive when β0 j < 0. Thus, the unique solution is for the monopolist to choose β0 j = 0

and α0 j = 1.

Since revenues at this position are strictly positive, the monopolist will enter when λ is suf-

ficiently low. Overconfidence for biased agents follows from noting that ai =
√

a2
0 +b2

0i, and the

expected disagreement result follows from noting that α
R
j = α

L
j .
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A.12 Proof of Proposition 10

Suppose one of the positions
{

β L,0,β R} is not occupied by any outlet. Then a potential entrant j

can enter into this position and become the unique outlet with maximum trust from the associated

type of agent. This outlet will have a trust of one and hence positive revenue ξ (1) from the

associated agent type, so entry will be profitable for sufficiently low λ . Let λ be any λ small

enough to support positive profit for at least two trust-maximizing outlets in every position earning

revenue exclusively from their corresponding agent type, i.e.,23

{
λ

∣∣∣∣ min
i∈{U,R,L}

1
2

miξ (1)−λ > 0
}
.

Furthermore, when these positions are occupied, an outlet at any other position earns zero revenue

and strictly negative profit since λ > 0. Thus, in any equilibrium all entrants must locate at one of

these positions.

It remains to show that an equilibrium exists with at least one outlet in each position. The

above result reduces the problem to a standard sequential entry game with three possible locations.

Let ΠL (JL,JU ,JR) denote the profit earned by an outlet in position β L in a market with JL,JU ,JR

firms in the three positions. We show two properties about ΠL that will be useful later. First, once

the other positions (0 and β R) have each been occupied by at least one outlet, the specific number

of such outlets no longer affect ΠL: for any JL,JU ,J′U ,JR,J′R such that min(JU ,J′U ,JR,J′R)≥ 1,

ΠL (JL,JU,JR) = ΠL
(
JL,J′U ,J

′
R
)
.

Moreover, by definition ΠL is strictly decreasing in JL and ΠL (2,JU,JR) > 0 for any JU ,JR due

to our earlier choice of λ , so there exists a number of potential entrants EL (λ ) < ∞ such that

ΠL (EL,JU,JR) < 0 for any JU ,JR ≥ 1. Combining this with our preceding result, we obtain the

23Requiring enough profit for two trust-maximizing outlets in every position eliminates edge cases where the
market only supports a limited number of outlets. Such outlets could instead choose to pool in one or two of the
locations rather than spread across all three.
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second property: there exists a unique J∗L ∈ [2,EL) such that for any JU ,JR ≥ 1,

ΠL (J∗L,JU ,JR) ≥ 0

ΠL (J∗L +1,JU ,JR) < 0.

This unique J∗L is the threshold beyond which entry into position β L is no longer profitable. Let

ΠU and ΠR denote similar objects for positions 0 and β R, where similar arguments show that these

two properties hold as well. Let J∗U and J∗R denote their counterparts to J∗L.

The tuple (J∗L,J
∗
U ,J

∗
R) of outlets is an equilibrium if the following conditions hold for ΠL:

ΠL (J∗L,J
∗
U ,J

∗
R) ≥ 0

ΠL (J∗L +1,J∗U ,J
∗
R) < 0

ΠL (J∗L,J
∗
U ,J

∗
R) ≥ ΠU (J∗L−1,J∗U +1,J∗R)

ΠL (J∗L,J
∗
U ,J

∗
R) ≥ ΠR (J∗L−1,J∗U ,J

∗
R +1) ,

and similar conditions hold for ΠU and ΠR. The first two conditions follow from the definition of

J∗L. Next, at (J∗L,J
∗
U ,J

∗
R) we have ΠL (J∗L,J

∗
U ,J

∗
R)≥ 0 by definition of J∗L and 0>ΠU (J∗L−1,J∗U +1,J∗R)

by definition of J∗U (noting that J∗L ≥ 2 and so J∗L−1≥ 1). Hence ΠL (J∗L,J
∗
U ,J

∗
R)>ΠU (J∗L−1,J∗U +1,J∗R),

giving us the third condition. The fourth condition follows similarly. The same arguments prove

that the corresponding conditions hold for ΠU and ΠR. The tuple (J∗L,J
∗
U ,J

∗
R) is also the unique

equilibrium: by uniqueness of (J∗L,J
∗
U ,J

∗
R), no other candidate tuple can satisfy the first two con-

ditions simultaneously. Thus, at least one outlet chooses each of the positions
{

β L,0,β R} in

equilibrium.

Applying Corollary 5 shows that agents are overconfident. Expected disagreement follows

from equation (11), noting that all outlets have a trust of one and the positions
{

β L,β R} approach

±1 as a0→ 0.
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B Asymptotic Beliefs when xit , s jt and rt have Nonzero Means

We show in this appendix that allowing the means of xit , s jt , and rt to be non-zero does not affect

our main results.

Suppose that 
ωt

rt

xit

st

∼ N (Mi,Ωi) , where Mi =


0

r

xi

s

 .

We assume that the set of all possible means Mi is a compact set M. As before, the set of all possible

variances Vi is a compact set V . The correlation matrix for (ωt ,rt ,xit ,st), which we denote as Ω̃i,

is fully parametrized by θi. With slight abuse of notation, the Lebesgue space on (Θ,M ,V ) is

now denoted ((Θ,V ,M ) ,L ,ν).

Assumption 4. At the beginning of the first period, agents have an absolutely continuous prior

belief µ i
0 over (Θ,V ,M ) with a continuous density with respect to ν .

It is straightforward to show that with a slight modification in definitions, our core results

continue to hold.

Proposition 11. Under Assumption 4 and the modification that s̃ jt =
(
s jt− s j

)
/
√

Var
(
s jt
)
, Propo-

sitions 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 hold.

Proof. We first show the following:

Lemma 5. The sequence of data realizations Di1, . . . ,Dit is independent of θ0i conditional on M0i,

R0i and V0i.

Proof. First consider Case 1 (as defined in the proof of Proposition 1). With slight abuse of

notation, define D j
iτ =

(
s jτ ,xiτ

)
to be the τth time j’s signal and reasoning are observed. The

agent knows D j
iτ ∼ N

(
M0i,Ω0i j

)
for some positive definite Ω0i j, where Ω0i j =V

1
2

0i jR0i jV
1
2

0i j, where

V0i j = diag
(
Ω0i j

)
and R0i j is the correlation matrix for D j

iτ , which in Case 1 is the correlation ρi j.

Independence across periods then generalizes the result to the entire sequence of data observations.

Cases 2 and 3 can be proved in the same way.
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By applying Lemma 5 to the proof of Proposition 1, we can prove that, as T → ∞, agent

i’s posterior distribution on θ in any period t > εT converges to a limit µ i
∞,θ that depends only

on her prior µ i
0,θ and the correlations R0i. In other words, Proposition 1 continues to hold under

Assumption 4. Then by the properties of the multivariate normal distribution, in any period t where

an agent observes source j, the mean of her posterior on ωt given s jt (but not xit or rt) under µ i
∞,θ

is

ω
i
t
(
s jt
)
= α

i
j s̃ jt , (9)

where s̃ jt =
(
s jt− s j

)
/
√

Var
(
s jt
)

is the new standardized version of s jt . This proves that Propo-

sition 2 holds under Assumption 4 and the modified s̃ jt . The remaining propositions can be shown

to hold under Assumption 4 and the modified s̃ jt by applying the modified Propositions 1 and 2 to

the respective proofs of Propositions 3, 4, 5, 6, 7, 8, 9 and 10.

C Trust and Polarization when Agents Believe their own Bias

is Nonzero

We consider a case where agents place a dogmatic prior on bi = b∗ for some b∗ 6= 0. We follow

the same setup as those in Section 3, namely that there exist multiple available sources, but agents

are single-homing and ideological valence rt is never observed. As in Section 3, we make the

following assumptions, with the first having been modified to incorporate the dogmatic prior on bi:

Assumption 5. The support of µ i
0,θ is the set Θ

prior
i ⊂Θ for which bi = b∗ and ai = a0i.

Assumption 6. b0 ≤ a0 and
∣∣α j
∣∣+ ∣∣β j

∣∣≤ 1 for all j.

The following proposition (originally Proposition 4) only requires minor modification.2425

Proposition 12. Suppose rt is never observed and agents single home. Under Assumptions 5

and 6, agent i’s identified set, Ii (R0i), is non-empty and consists of all θi ∈ Θ such that ai = a0i,

24The results from Section 2 do not rely on the agent’s prior on bi.
25Unlike in the original proposition, the presence of a nonzero b∗ here means that the identified set may sometimes

exclude extreme values of β . The specific bounds are not necessary for the results that follow, and we do not derive
explicit expressions for them.
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bi = b∗, α = ρis−βb∗
ai

, and Ω̃(θi) is positive semi-definite, where Ω̃(θi) is the correlation matrix for

(ωt ,rt ,xit ,st).

Proof. The proof for Proposition 4 (reproduced with only minor modification below) applies the

expressions from Assumption 5 and then shows that the identified set is non-empty by picking

(among other parameters) β = 0. The same argument can be used to prove the new setting, as the

degenerate prior on bi = b∗ has no effect in the case with β = 0.

Recall that Ii (R0i) =
{

θi ∈Θ
prior
i : aiα +biβ = ρis

}
, where any θi ∈ Θ

prior
i must give rise to

a positive semi-definite correlation matrix Ω̃(θi) for (ωt ,rt ,xit ,st). Assumption 5 implies that θi ∈

Ii (R0i) if and only if ai = a0, bi = b∗, α = ρis−βb∗
ai

, and Ω̃(θi) is positive semi-definite. Assumption

6 implies that
∣∣α0 j

∣∣ = ∣∣ρi j/a0i
∣∣ = ∣∣α0 j +(b0i/a0i)β0 j

∣∣ ≤ ∣∣∣∣α0 j
∣∣+ ∣∣β0 j

∣∣∣∣ ≤ 1. We can then pick

β = 0, γ = 0, and assume that s jt are mutually independent and independent of rt and xit conditional

on ωt , so Σ = Corr(st) = αα ′+K, where K is a diagonal matrix with entries equal to 1−α2
j . It

follows that Ω̃(θi) is positive semi-definite, so Ii (R0i) is non-empty.

Under Assumptions 5 and 6, Propositions 1 and 12 imply the agent’s trust in information

source j is26

α
i
j =

ρi j−β
i
jb
∗

a0i
=

a0iα0 j +b0iβ0 j−β
i
jb
∗

a0i
= α0 j +

b0iβ0 j−β
i
jb
∗

a0i
,

where β
i
j denotes agent i’s expectation of β j under µ i

∞,θ .

Proposition 13. Suppose rt is never observed, agents single home, and Assumptions 5 and 6 hold.

Then given any prior µ i
0,θ , there exists b∗max > 0 such that for all b∗ ∈ [−b∗max,b

∗
max], agent R’s (L’s)

trust in source j is increasing (decreasing) in the source’s bias β0 j holding constant the source’s

accuracy α0 j. Additionally, in the limit as b∗ → 0 and then as a0 ↓ b0, she will come to believe

that a perfectly right-biased (left-biased) source is perfectly accurate, and trust it more than any

unbiased source with α0 j < 1.

Proof. Without loss of generality, let i be an R-agent. For the first result, note the derivative of her

26For any θi ∈ Ii (R0i), by Proposition 12 α i
j =

ρi j−β i
jb
∗

a0i
. The expression for trust α

i
j is then obtained by taking the

expectation over the limiting posterior µ i
∞,θ .
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trust α
i
j with respect to in a source j’s bias β0 j holding constant its accuracy α0 j is:

∂

∂β0 j
α

i
j ∝ b0i−

(
∂

∂β0 j
β

i
j

)
b∗.

For any continuous prior µ i
0,θ , ∂

∂β0 j
β

i
j is bounded above by some finite M j and below by some

finite M j for the closed interval β0 j ∈ [−1,1]. First, consider any b∗ > 0. If M j ≤ 0 then the second

term above is always strictly negative. If M j > 0, then for any b∗ < b0i/M j we have b0i > M jb∗ ≥(
∂

∂β0 j
β

i
j

)
b∗. In both cases, we have the desired result of ∂

∂β0 j
α

i
j > 0 for all β0 j. A similar argument

with M j proves the result for b∗< 0. Hence we can set b∗max =min
{

min j
∣∣b0i/M j

∣∣ ,min j
∣∣b0i/M j

∣∣}
to guarantee the result for all b∗ ∈ [−b∗max,b

∗
max] and across all sources j.

For the second result, the R-agent’s trust with respect to a perfectly right-biased source is

α
i
j =

b0i−β
i
jb
∗

a0i
. Since β

i
j is bounded within [−1,1] for any prior, taking the limit as b∗→ 0 and then

a0 ↓ b0 gives α
i
j = 1. For any unbiased source with α0 j < 1, the agent’s trust is α

i
j = α0 j−

β
i
jb
∗

a0i
,

which approaches α0 j < 1 in the limit as b∗→ 0.

Corollary 7. Suppose rt is never observed, agents single home, and Assumptions 5 and 6 hold.

Further suppose that all sources have accuracy α0 j < 1 and there is at least one perfectly right-

biased source and at least one perfectly left-biased source. In the limit as b∗→ 0 and then a0 ↓ b0,

expected disagreement is one.

Proof. Follows from Proposition 13.

D Trust and Disagreement with Overconfidence

In this section, we derive general results for trust and beliefs in the presence of overconfidence,

as discussed in Section 5. Here we drop the simplifying assumption that amax
i =

√
a2

0 +b2
0i, and

instead assume that amax
i ≥

√
a2

0 +b2
0i, as in Assumption 1’.

Lemma 6. Under Assumption 1’, agent i’s trust in information source j is

α
i
j = Aiρi j = Ai

(
a0α0 j +b0iβ0 j

)
,
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where the amplification factor Ai is given by

Ai =
∫ amax

i

ai

1
a

dµ
i
∞,a (a) . (10)

Proof. This follows from combining Propositions 1 and 6.

Lemma 6 shows that, as before, small differences in biases b0 and β0 j translate into large

differences in trust, provided the amplification factor Ai is large. The amplification factor Ai is

typically large whenever a0 and b0i are small. To see this, suppose that the posterior marginal

probability density function on ai is nonincreasing. It follows then that Ai→ ∞ as ai→ 0. In other

words, Ai is large if ai ≤
√

a2
0 +b2

0i is small and the agent’s posterior places sufficient weight on

values of ai close to ai.

Lemma 7. The accuracy and bias (αi,βi) that maximizes the agent i’s trust over all pairs satisfying

the feasibility condition α2
i +β 2

i ≤ 1 is given by

(αmax
i ,β max

i )≡

 a0√
a2

0 +b2
0i

,
b0i√

a2
0 +b2

0i

 .

Proof. By Lemma 6, we choose (αi,βi) to maximize Ai (a0αi +b0iβi) subject to α2
i + β 2

i ≤ 1.

Standard constrained optimization techniques yield the result.

For intuition, Figure 1 provides a graphical illustration of the forces that determine trust in

our model. The gray shaded area shows the set of all feasible signals—i.e., the (α,β ) satisfying

the constraint that α2 +β 2 ≤ 1. The curved boundary of this area is defined as the set of frontier

sources which have maximum possible accuracy given their bias. The blue lines in the figure plot

the set of iso-trust curves: combinations of α and β that yield the same trust. The slope of these

lines is −b0
a0

. Sources that fall on higher iso-trust curves are trusted more. From this graphical

analysis, it is immediately apparent that the trust-maximizing source (αmax,β max) will be the point

on the frontier tangent to the iso-trust curves.

Lemma 8. In the limit as T → ∞, whenever a single-homing agent i observes source j in any
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Figure 1: Iso-trust curves
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period t > εT , the mean of the agent’s posterior on ωt given s jt is

ω
i
t ( j) = α

i
j s̃ jt = Aiρi j s̃ jt , (11)

where s̃ jt = s jt/
√

Var
(
s jt
)

is the standardized version of s jt .

Proof. This follows from combining Lemma 6 with Proposition 2.

E Trust and Polarization when Agents may Observe Perverse

Sources

This appendix drops the restriction that a single-homing agent in any period t > εT chooses among

sources that she believes to have nonnegative accuracy. We instead assume the following:

Assumption 7. In any period t > εT , a single-homing agent chooses to observe a source among

all available sources to minimize her expected mean squared error after observing the source and

her own reasoning.

Lemma 9. Under Assumption 7, if all available sources are frontier sources (such that α2
0 j+β 2

0 j =

1) with positive accuracy (i.e., α0 j > 0) and symmetric biases (i.e., for any source with β0 j = β
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where β ∈ (−1,1), there exists a source k with β0k = −β ), then biased agents will observe a

like-minded source in all periods t > εT .

Proof. This lemma follows from applying our assumption that a0i > 0 to Equation (2) and Lemma

6, and then applying the logic of the proof of Proposition 3.

Lemma 10. Under Assumption 7, if a trust-maximizing source exists, the agent observes a source

with α
i
j = 1 in all periods t > εT .

Proof. This lemma follows immediately from our assumption that a0i > 0, which implies that if a

trust-maximizing source exists, there exists a source such that α
i
j = 1 and there can be no source

such that α
i
j =−1.

The above two lemmas imply that all main propositions except Proposition 3 continue to hold.

Proposition 14. Suppose Assumption 7 holds. Propositions 1, 2, 4, 5, 6, 7, 8, 9 and 10 hold.

However, if agent i single-homes, her posterior belief on θi is µ i
∞,θ , and the expected accuracy ai

of her own reasoning under µ i
∞,θ is less than one, then she chooses to observe in each period a

source j for whom
∣∣α i

j
∣∣ is maximal.

Proof. Propositions 1, 2, 4, 5, 6, and 7 do not depend on the choice of sources to observe during

the exploitation phase, so their proofs are unaffected by Assumption 7. Proposition 8 can be shown

by applying Lemma 9, since sources are assumed to be symmetric. For Proposition 9, there is only

one source, so the agent’s choice does not matter. Proposition 10 can be shown by applying Lemma

10, since outlets will still choose the trust-maximizing positions. The last sentence follows from

the proof of Proposition 3.

F Asymptotic Learning without Reasoning

Can agent i learn about ωt if the agent does not observe any information source that she ex ante

believed to be unbiased? As discussed in Section 2.4 and shown in this section, learning about ωt

from st is not possible if reasoning xit were not available. Since ρis and ρir are not observed in

this case, the distribution of observable data is given by R0i = ρrs alone. The identified set Ii (R0i)

consistent with observed data ρrs contains a wide range of parameter values, including α j = 1 for
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some source j, or α j = −1 for the same source j. The agent thus cannot rule out the extreme

possibilities that any of the sources is perfectly positively correlated, uncorrelated, or perfectly

negatively correlated with the true state.

Without reasoning xit , the agent’s posterior mean on ωt may always be zero regardless of what

signals are available. This occurs whenever the agent’s prior are (α,γ)-symmetric, meaning that

µ i
0,θ (ϑ)= µ i

0,θ (ϑ
′) for all measurable ϑ ⊆LΘ, where ϑ ′= {(a,−α,b,β ,−γ,Σ) | (a,α,b,β ,γ,Σ) ∈ ϑ}.

Intuitively, the agent’s average belief about ωt does not change after observing st if she believes a

priori that the correlation of ωt with any observable source (i.e. any element of st or rt) is zero in

expectation.

Proposition 15. Suppose agent i does not observe xit in any period, but still observes rt . Under

Assumption 1’, agent i’s identified set, Ii (R0i), includes θi ∈ Θ such that α j = z, for any source j

and any z ∈ [−1,1]. Furthermore, the mean of the agent’s posterior on ωt given st in any period

t > εT is zero in the limit as T → ∞ if the agent’s prior is (α,γ)-symmetric.

Proof. Consider the multi-homing case first. Take any z ∈ [−1,1] and j ∈ {1, ...,J}. Define θi as

follows. Set a = a0, b = 0, α j = z, αk = zΣ jk for all k 6= j, γ = zρr j and β = 1√
1−γ2

(ρrs− γα).

It is immediate that ρrs = αγ +β
√

1− γ2 (as required by Remark 1). Furthermore, note that θi

corresponds to a well-defined correlation matrix for the joint distribution of (ωt ,rt ,st).27 Therefore,

we have that θi ∈ Ii (R0i). The same θi works in the single-homing case, which only requires a well-

defined correlation matrix for the unit-normal joint distribution of (ωt ,rt ,skt) for each k.

By Propositions 1 and the properties of the multivariate normal distribution, the mean of the

multi-homing agent’s posterior on ωt given st is

∫
Ii(R0i)

α ′Σ−1s̃tdµ i
0,θ (θi)

µ i
0,θ (Ii (R0i))

,

27This correlation matrix is given by

Ω =

 1 γ α ′

γ 1 ρ ′rs
α ρrs Σ

 .
Setting γ = zρrs j, α j = z and αk = zΣ jk for all k 6= j, where z ∈ [−1,1], corresponds to supposing that ωt = zs̃ jt +(1−
z)et , where et ∼ N(0,1) and is independent of (rt ,st). Since it follows that ωt ∼ N (0,1), Ω is well-defined.
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where Ii (R0i) =
{

θi ∈Θ : α̃
′
Σ̃−1α̃ ≤ 1;b = 0

}
. Under single-homing, the analogous mean is

∫
Ii(R0i)

α j s̃ jtdµ i
0,θ (θi)

µ i
0,θ (Ii (R0i))

,

where Ii (R0i) =
{

θ ∈Θ : α̃
′
jΣ̃
−1
j α̃ j ≤ 1∀ j;b = 0

}
.28 Since µ i

0,θ is (α,γ)-symmetric, both inte-

grals above are zero.

G Large Market of Non-frontier Sources

This section considers a situation wherein there are many non-frontier sources that together provide

a relatively “large” quantity of information about both ωt and rt , as discussed in Section 6. In

particular, suppose that the number of sources is large, the signals s jt are mutually independent

conditional on ωt and rt , and there is at least a minimal amount of diversity in their biases. We

formalize this notion of a “large and diverse” set of sources as follows.

Definition 1. A sequence of random markets is indexed by J = 1,2, ...,∞. Random market J

has J sources, indexed by j = 1, ...,J, each with accuracy and bias
(
α0 j,β0 j

)
drawn i.i.d. from

some distribution F . The sources’ signals s jt are mutually independent conditional on ωt and rt .

Furthermore, under F ,

1. Both α0 j 6= 0 and β0 j 6= 0 have nonzero probability;

2. α0 j and β0 j are not perfectly correlated; and

3. α2
0 j +β 2

0 j < 1 with probability one.

As shown in Proposition 16 below, a multi-homing agent’s posterior mean ω
i
t in a large ran-

dom market is the same as a single-homing agent when she observes her trust-maximing source.

The reason is that a multi-homing agent in a random market can construct a linear combination of

the sources’ signals whose value will approach the signal of the agent’s trust-maximizing source,

as in Lemma 2.

28See the proof of Propositions 6 and 7 for the definitions of α̃ j, Σ̃ j, α̃ and Σ̃.
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Proposition 16. Suppose Assumption 1’ holds. Then the mean of the multi-homing agent’s poste-

rior on ωt given st under µ i
∞,θ in the probability limit of a sequence of random markets is

ω
i
t = α

max
i ωt +β

max
i r̃t .

Proof. By Lemma 1, it suffices to show that limJ→∞ ρ ′isΣ
−1s̃t = a0ωt + b0ir̃t and limJ→∞ Ai =

1/
√

a2
0 +b2

0i. We use notation developed in Lemma 4, and let Q= ZK−1Z′, dαα = 1
J ∑

J
j=1 α2

0 j/κ2
0 j,

dββ = 1
J ∑

J
j=1 β 2

0 j/κ2
0 j, and dαβ = 1

J ∑
J
j=1 α0 jβ0 j/κ2

0 j. It follows that Q = J

 dαα dαβ

dαβ dββ

. Next

let W =Q(I +Q)−1. By Woodbury’s matrix identity, we can write Z (Z′Z +K)−1 = (I−W )ZK−1.

It is easy to check that

W =


1
J dαα+dαα dββ−d2

αβ

1
J2 +

1
J dαα+

1
J dββ+dαα dββ−d2

αβ

− 1
J dαβ

1
J2 +

1
J dαα+

1
J dββ+dαα dββ−d2

αβ

− 1
J dαβ

1
J2 +

1
J dαα+

1
J dββ+dαα dββ−d2

αβ

1
J dββ+dαα dββ−d2

αβ

1
J2 +

1
J dαα+

1
J dββ+dαα dββ−d2

αβ

 .

It is also easy to check that Z (Z′Z +K)−1 Z′ = (I−W )Q = W . By Definition 1, E
[
α2

0 j/κ2
0 j

]
,

E
[
β 2

0 j/κ2
0 j

]
, and E

[
α0 jβ0 j/κ2

0 j

]
exist and are finite. Therefore, dαα , dββ , and dαβ converge in

probability in the limit as J → ∞ by the weak law of large numbers. Furthermore, Definition

1 implies that α0 j and β0 j are not linearly dependent, so neither are α0 j/
√

κ2
0 j and β0 j/

√
κ2

0 j.

By Cauchy-Schwarz, we have that E
[
α0 jβ0 j/κ2

0 j

]2
< E

[
α2

0 j/κ2
0 j

]
E
[
β 2

0 j/κ2
0 j

]
. This implies that

plim
(

dααdββ −d2
αβ

)
> 0. Therefore, Z (Z′Z +K)−1 Z′ =W →p I.

Further algebraic manipulation shows that

y′Z
(
Z′Z +K

)−1
εt =

(
a0dββ +b0dαβ

)(1
J ∑

J
j=1

α0 j√
κ2

j

ε̃ jt

)
+
(
a0dαβ +b0dαα

)(1
J ∑

J
j=1

β0 j√
κ2

j

ε̃ jt

)
1
J2 +

1
J dαα + 1

J dββ +dααdββ −d2
αβ

+op (1)

where ε̃ jt = ε jt/
√

κ2
j ∼ N (0,1) are mututally independent across j as well as independent of α0 j

and β0 j. Therefore, by the weak law of large numbers, y′Z (Z′Z +K)−1
εt →p 0. It immediately

follows from Lemma 4 that ρ ′isΣ
−1s̃t = y′Z (Z′Z +K)−1 (Z′ϕt + εt)→p y′ϕt = a0ωt +b0irt .

Next note that the R2 of the population regression of xit on st is ρ
′
isΣ
−1ρis. By Lemma 4 and
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the first paragraph in this proof, ρ
′
isΣ
−1ρis = y′Z (Z′Z +K)−1 Z′y→p y′y = a2

0+b2
0i. Therefore, the

R2 of the population regression of xit on st and rt also converges in probability to a2
0 + b2

0i. This

implies that a
i
→p

√
a2

0 +b2
0i. By Assumption 3, µ i

∞,a = µ i
0,a, so Ai→p 1/

√
a2

0 +b2
0i.

H Mistrust of Motives and Partisan Conflict

This appendix shows how ideological bias can lead to mistrust of motives across ideological di-

vides and results in intensified conflict in political settings. This exploration is motivated by studies

that show rising numbers of Americans hold negative views towards people on the other side of the

partisan divide, for example, seeing them as unintelligent and selfish (Iyengar, Sood, and Lelkes

2012; Iyengar et al. 2019), with potentially important consequences such as reducing the efficacy

of government (Hetherington and Rudolph 2015). 29

We augment our model by adding an observable policy decision dt to be made by one of two

agents, R and L, and allow for ulterior motives B in decision making. We then characterize the

agents’ beliefs about the others’ motive B when the agents assume both their and others’ biases

are b = 0 when in fact b 6= 0. This assumption is deliberately stark to illustrate that if people

underestimate the extent to which others’ reasoning is biased, they may attribute their behavior

to biased motives instead. More precisely, we show that agents mistakenly learn that B 6= 0 even

when in fact B = 0.

The setup is as follows. Suppose Assumption 1’ holds and all agents are single-homers ob-

serving their trust-maximizing source (αmax
i ,β max

i ) in some period t > εT in the limit as T → ∞.

After observing the sources’ signals in some period t, R makes an observable policy decision dt to

maximize the social welfare function, given by −(ωt−dt)
2.

We assume that agents fail to appreciate both their own and others’ ideological bias and

believe that bi = 0 for all agents i. Consequently, they believe that others have the same belief

about the state ωt as they do. At the same time, agents entertain the possibility that others may have

ulterior motives. Specifically, we assume that L believes that R maximizes −(ωt +BRrt−dt)
2,

where BR parameterizes R’s ulterior motive and may not be equal to zero. Under these assumptions,

29Relatedly, Ortoleva and Snowberg (2015) and Levy and Razin (2015) explore how correlation neglect and result-
ing overconfidence impact polarization and political behavior.
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it is immediate that people who underestimate the extent to which others’ reasoning is biased

attribute observed behavior to biased motives instead.

If L observes R’s decision dt in any period when rt 6= 0, then L infers that BR = 2b0/
√

a2
0 +b2

0 >

0. Similarly, if R were to observe L’s decisions, R would also conclude that L had an ulterior motive

BL = −2b0/
√

a2
0 +b2

0 < 0. In other words, mistrust of motives arises when well-meaning agents

fail to see how ideological bias colors inference about facts by both themselves and others. The

magnitude of mistrust in other’s motives is increasing in ideological bias b0 of the agents.

It follows that the political behavior of well-meaning agents with ideological bias can mimic

that of self-interested agents with actual conflicts of interest. For example, suppose that the above

two agents engage in a contest for the power to decide dτ for some τ > t after learning about the

bias in each other’s preferences. Tullock (1980) provides an elemental model of such a contest. R

and L simultaneously invest in “arms” to obtain decision-making power, where the probability that

R has power to decide dτ depends on R’s stock of arms relative to L’s. In L’s eyes, the payoff of

obtaining decision-making power is zero when BR = 0, since the two agents would choose the same

decision. However, the gain from winning the contest becomes positive if L either perceives R to

have a nonzero ulterior motive BR or believes R’s inference about ωt to be biased. The symmetric

Nash equilibrium therefore has positive expenditures on arms, even though in equilibrium the

contestants have the same probabilities of winning as if neither had spent anything.

Other types of inefficient strategic behavior also arise from conflicts of interest in elemental

game theoretic models of organizational behavior, including costly signaling, signal jamming, ob-

fuscation and uninformative cheap talk (see Gibbons, Matouschek, and Roberts 2013). Ideological

differences may therefore lead to welfare losses from uninformative communication across ideo-

logical divides, poor decision-making, as well as inefficient expenditures in the battle for power.

I Finite-time Evolution of Beliefs

This appendix studies the finite-time evolution of beliefs and speed of convergence by presenting

numerical simulations. Recall that each period’s state variable ωt represents a different topic in

the news—the efficacy of surgical masks in preventing the spread of COVID-19 in one period, the

efficacy of Vitamin D in reducing the severity of COVID-19 infections in another period, and so on.
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Here we characterize how quickly agents form beliefs about whether information sources provide

accurate information about the states. Here we characterize how quickly agents form beliefs about

whether information sources provide accurate information about the states.

For simplicity, we focus on two agents i ∈ {R,U}. Both agents have reasoning xit with the

accuracy a0i = a, where a > 0, but different biases, b0R = b and b0U = 0, where b > 0. We assume

that both agents a priori believe that bi = 0 and ai = a. There are two sources j ∈ {R,U}, where

(αR,βR) =
(1

2 ,
1
2

)
and (αU ,βU) = (1,0). The sources and the agents’ reasoning have unit-normal

distributions.

Each agent i observes both xit and s jt for the same source j in each period t. Let the covariance

matrix of the observed signals
(
xit ,s jt

)
be denoted by Σi j =

 σ2
i ρi j

ρi j σ2
j

. Each agent has a prior

f
(
Σi j
)
, where

Σi j = diag
(
Vi j
)
×Ωi j×diag

(
Vi j
)
,

Ωi j is a correlation matrix, and Vi j is a vector of coefficient scales. We use an Lewandowski-

Kurowicka-Joe (LKJ) prior with parameter η = 1 for the correlation matrix. Setting η = 1 implies

that the density is uniform over all correlation matrices. We use a log normal prior with parameters

µ = 0 and ν = 0.0001 for the scale. Furthermore, the prior is truncated for all values Σi j such that

αi j =
1
a

ρi j√
σ2

i σ2
j

6∈ [−1,1].

We use the software platform STAN to simulate 1000 draws from the agent i’s posterior distribution

in each period t.

Figure 2 shows belief evolution when a = b = 1
2 . On the left, we display the posterior dis-

tribution for αi j for a single sequence of signal realizations. On the right, we display the median

difference in posterior mean between agents R and U across multiple sequences of signal realiza-

tions. The top two panels shows that the trust of agents R and U in an unbiased source quickly

converges towards the asymptotic value of one., while the difference in posterior mean converges

to zero. The bottom two panels shows that the trust of agents R and U in a R-biased source quickly

diverges.

Figure 3 shows the case where a = b = 1
5 . In this case, the agent’s reasoning is noisier,
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Figure 2: Finite-time belief evolution when a = b = 1
2

Notes: The upper left panel show the simulated posterior distribution of αi j for agents i = R,U observing an unbiased source j = U for single
sequence of signal realizations. We assume that a = b = 1

2 . The thick lines indicate the posterior median. The lighter bands are for the [0.05,
0.95] percentiles and the darker bands are for [0.10, 0.90] percentiles. The horizontal line denotes the asymptotic values, respectively. In the upper
right panel, the thick black line shows the median of the difference in posterior means between the two agents for 25 sequences of simulated signal
realizations with different randomization seeds. The bands are for [0.20, 0.80] percentiles. The lower panels show the simulated posteriors when
agents observe an biased source j =U instead of an unbiased source.

so convergence is slower. However, in all of the above cases, the beliefs converge towards the

asymptotic beliefs that we analytically derive.
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Figure 3: Finite-time belief evolution when a = b = 1
5

Notes: The upper left panel show the simulated posterior distribution of αi j for agents i = R,U observing an unbiased source j = U for single
sequence of signal realizations. We assume that a = b = 1

5 . The thick lines indicate the posterior median. The lighter bands are for the [0.05,
0.95] percentiles and the darker bands are for [0.10, 0.90] percentiles. The horizontal line denotes the asymptotic values, respectively. In the upper
right panel, the thick black line shows the median of the difference in posterior means between the two agents for 25 sequences of simulated signal
realizations with different randomization seeds. The bands are for [0.20, 0.80] percentiles. The lower panels show the simulated posteriors when
agents observe an biased source j =U instead of an unbiased source.
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